這一章的易錯(cuò)點(diǎn),都集中在空集這一概念上,而每次考試基本都會(huì)在選填題上涉及這一概念,一個(gè)不小心就會(huì)丟分。次一級(jí)的知識(shí)點(diǎn)就是集合的韋恩圖、會(huì)畫(huà)圖,掌握了這些,集合的“并、補(bǔ)、交、非”也就解決了。
還有函數(shù)的定義域和函數(shù)的單調(diào)性、增減性的概念,這些都是函數(shù)的基礎(chǔ)而且不難理解。在第一輪復(fù)習(xí)中一定要反復(fù)去記這些概念,最好的方法是寫(xiě)在筆記本上,每天至少看上一遍。
第二章:基本初等函數(shù)
——指數(shù)、對(duì)數(shù)、冪函數(shù)三大函數(shù)的運(yùn)算性質(zhì)及圖像
函數(shù)的幾大要素和相關(guān)考點(diǎn)基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點(diǎn)等等。關(guān)于這三大函數(shù)的運(yùn)算公式,多記多用,多做一點(diǎn)練習(xí),基本就沒(méi)問(wèn)題。
函數(shù)圖像是這一章的重難點(diǎn),而且圖像問(wèn)題是不能靠記憶的,必須要理解,要會(huì)熟練的畫(huà)出函數(shù)圖像,定義域、值域、零點(diǎn)等等。對(duì)于冪函數(shù)還要搞清楚當(dāng)指數(shù)冪大于一和小于一時(shí)圖像的不同及函數(shù)值的大小關(guān)系,這也是?键c(diǎn)。另外指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的對(duì)立關(guān)系及其相互之間要怎樣轉(zhuǎn)化等問(wèn)題,需要著重回看課本例題。
第三章:函數(shù)的應(yīng)用
這一章主要考是函數(shù)與方程的結(jié)合,其實(shí)就是函數(shù)的零點(diǎn),也就是函數(shù)圖像與X軸的交點(diǎn)。這三者之間的轉(zhuǎn)化關(guān)系是這一章的重點(diǎn),要學(xué)會(huì)在這三者之間靈活轉(zhuǎn)化,以求能最簡(jiǎn)單的解決問(wèn)題。關(guān)于證明零點(diǎn)的方法,直接計(jì)算加得必有零點(diǎn),連續(xù)函數(shù)在x軸上方下方有定義則有零點(diǎn)等等,這些難點(diǎn)對(duì)應(yīng)的證明方法都要記住,多練習(xí)。二次函數(shù)的零點(diǎn)的Δ判別法,這個(gè)需要你看懂定義,多畫(huà)多做題。
必修二
第一章:空間幾何
三視圖和直觀圖的繪制不算難,但是從三視圖復(fù)原出實(shí)物從而計(jì)算就需要比較強(qiáng)的空間感,要能從三張平面圖中慢慢在腦海中畫(huà)出實(shí)物,這就要求學(xué)生特別是空間感弱的學(xué)生多看書(shū)上的例圖,把實(shí)物圖和平面圖結(jié)合起來(lái)看,先熟練地正推,再慢慢的逆推(建議用紙做一個(gè)立方體來(lái)找感覺(jué))。
在做題時(shí)結(jié)合草圖是有必要的,不能單憑想象。后面的錐體、柱體、臺(tái)體的表面積和體積,把公式記牢問(wèn)題就不大。
第二章:點(diǎn)、直線、平面之間的位置關(guān)系
這一章除了面與面的相交外,對(duì)空間概念的要求不強(qiáng),大部分都可以直接畫(huà)圖,這就要求學(xué)生多看圖。自己畫(huà)草圖的時(shí)候要嚴(yán)格注意好實(shí)線虛線,這是個(gè)規(guī)范性問(wèn)題。
關(guān)于這一章的內(nèi)容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質(zhì),同時(shí)能用圖形語(yǔ)言、文字語(yǔ)言、數(shù)學(xué)表達(dá)式表示出來(lái)。只要這些全部過(guò)關(guān)這一章就解決了一大半。這一章的難點(diǎn)在于二面角這個(gè)概念,大多同學(xué)即使知道有這個(gè)概念,也無(wú)法理解怎么在二面里面做出這個(gè)角。對(duì)這種情況只有從定義入手,先要把定義記牢,再多做多看,這個(gè)沒(méi)有什么捷徑可走。
第三章:直線與方程
這一章主要講斜率與直線的位置關(guān)系,只要搞清楚直線平行、垂直的斜率表示問(wèn)題就錯(cuò)不了。需要注意的是當(dāng)直線垂直時(shí)斜率不存在的情況是考試中的?键c(diǎn)。另外直線方程的幾種形式所涉及到的一般公式,會(huì)用就行,要求不高。點(diǎn)與點(diǎn)的距離、點(diǎn)與直線的距離、直線與直線的距離,只要直接套用公式就行,沒(méi)什么難點(diǎn)。
第四章:圓與方程
能熟練地把一般式方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,通常的考試形式是等式的一邊含根號(hào),另一邊不含,這時(shí)就要注意開(kāi)方后定義域或值域的限制。通過(guò)點(diǎn)到點(diǎn)的距離、點(diǎn)到直線的距離、圓半徑的大小關(guān)系來(lái)判斷點(diǎn)與圓、直線與圓、圓與圓的位置關(guān)系。另外注意圓的對(duì)稱(chēng)性引起的相切、相交等的多種情況,自己把幾種對(duì)稱(chēng)的形式羅列出來(lái),多思考就不難理解了。
必修三
總的來(lái)說(shuō)這一本書(shū)難度不大,只是比較繁瑣,需要有耐心的去畫(huà)圖去計(jì)算。
程序框圖與三種算法語(yǔ)句的結(jié)合,及框圖的算法表示,不要用常規(guī)的語(yǔ)言來(lái)理解,否則你會(huì)在這樣的題型中栽跟頭。
秦九韶算法是重點(diǎn),要牢記算法的公式。
統(tǒng)計(jì)就是對(duì)一堆數(shù)據(jù)的處理,考試也是以計(jì)算為主,會(huì)從條形圖中計(jì)算出中位數(shù)等數(shù)字特征,對(duì)于回歸問(wèn)題,只要記住公式,也就是個(gè)計(jì)算問(wèn)題。
概率,主要就只幾何概型、古典概型。幾何概型只要會(huì)找表示所求事件的長(zhǎng)度面積等,古典概型只要能表示出全部事件就可以。
必修四
第一章:三角函數(shù)
考試必在這一塊出題,且題量不小!誘導(dǎo)公式和基本三角函數(shù)圖像的一些性質(zhì),沒(méi)有太大難度,只要會(huì)畫(huà)圖就行。難度都在三角函數(shù)形函數(shù)的振幅、頻率、周期、相位、初相上,及根據(jù)最值計(jì)算A、B的值和周期,及恒等變化時(shí)的圖像及性質(zhì)變化,這部分的知識(shí)點(diǎn)內(nèi)容較多,需要多花時(shí)間,不要再定義上死扣,要從圖像和例題入手。
第二章:平面向量
向量的運(yùn)算性質(zhì)及三角形法則、平行四邊形法則的難度都不大,只要在計(jì)算的時(shí)候記住要“同起點(diǎn)的向量”這一條就OK了。向量共線和垂直的數(shù)學(xué)表達(dá),是計(jì)算當(dāng)中經(jīng)常用到的公式。向量的共線定理、基本定理、數(shù)量積公式。分點(diǎn)坐標(biāo)公式是重點(diǎn)內(nèi)容,也是難點(diǎn)內(nèi)容,要花心思記憶。
第三章:三角恒等變換
這一章公式特別多,像差倍半角公式這類(lèi)內(nèi)容常會(huì)出現(xiàn),所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫(xiě)好后貼在桌子上,天天都要看。要提一點(diǎn),就是三角恒等變換是有一定規(guī)律的,記憶的時(shí)候可以集合三角函數(shù)去記。
必修五
第一章:解三角形
掌握正弦、余弦公式及其變式、推論、三角面積公式即可。
第二章:數(shù)列
等差、等比數(shù)列的通項(xiàng)公式、前n項(xiàng)及一些性質(zhì)常出現(xiàn)于填空、解答題中,這部分內(nèi)容學(xué)起來(lái)比較簡(jiǎn)單,但考驗(yàn)對(duì)其推導(dǎo)、計(jì)算、活用的層面較深,因此要仔細(xì)。考試題中,通項(xiàng)公式、前n項(xiàng)和的內(nèi)容出現(xiàn)頻次較多,這類(lèi)題看到后要帶有目的的去推導(dǎo)就沒(méi)問(wèn)題了。
第三章:不等式
這一章一般用線性規(guī)劃的形式來(lái)考察學(xué)生,這種題通常是和實(shí)際問(wèn)題聯(lián)系的,所以要會(huì)讀題,從題中找不等式,畫(huà)出線性規(guī)劃圖,然后再根據(jù)實(shí)際問(wèn)題的限制要求來(lái)求最值。
來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問(wèn)題,請(qǐng)聯(lián)系我們及時(shí)刪除。