高數(shù)定理定義總結(jié)
高數(shù)定理定義總結(jié)第一章函數(shù)與極限
1、函數(shù)的有界性在定義域內(nèi)有f(x)≥K1則函數(shù)f(x)在定義域上有下界,K1為下界;如果有f(x)≤K2,則有上界,K2稱為上界。函數(shù)f(x)在定義域內(nèi)有界的充分必要條件是在定義域內(nèi)既有上界又有下界。
2、數(shù)列的極限定理(極限的唯一性)數(shù)列{xn}不能同時(shí)收斂于兩個(gè)不同的極限。定理(收斂數(shù)列的有界性)如果數(shù)列{xn}收斂,那么數(shù)列{xn}一定有界。
如果數(shù)列{xn}無(wú)界,那么數(shù)列{xn}一定發(fā)散;但如果數(shù)列{xn}有界,卻不能斷定數(shù)列{xn}一定收斂,例如數(shù)列1,-1,1,-1,(-1)n+1…該數(shù)列有界但是發(fā)散,所以數(shù)列有界是數(shù)列收斂的必要條件而不是充分條件。
定理(收斂數(shù)列與其子數(shù)列的關(guān)系)如果數(shù)列{xn}收斂于a,那么它的任一子數(shù)列也收斂于a.如果數(shù)列{xn}有兩個(gè)子數(shù)列收斂于不同的極限,那么數(shù)列{xn}是發(fā)散的,如數(shù)列1,-1,1,-1,(-1)n+1…中子數(shù)列{x2k-1}收斂于1,{xnk}收斂于-1,{xn}卻是發(fā)散的;同時(shí)一個(gè)發(fā)散的數(shù)列的子數(shù)列也有可能是收斂的。
3、函數(shù)的極限函數(shù)極限的定義中00(或A0(或f(x)>0),反之也成立。函數(shù)f(x)當(dāng)x→x0時(shí)極限存在的充分必要條件是左極限右極限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等則limf(x)不存在。
一般的說(shuō),如果lim(x→∞)f(x)=c,則直線y=c是函數(shù)y=f(x)的圖形水平漸近線。如果lim(x→x0)f(x)=∞,則直線x=x0是函數(shù)y=f(x)圖形的鉛直漸近線。
4、極限運(yùn)算法則定理有限個(gè)無(wú)窮小之和也是無(wú)窮;有界函數(shù)與無(wú)窮小的乘積是無(wú)窮。怀(shù)與無(wú)窮小的乘積是無(wú)窮。挥邢迋(gè)無(wú)窮小的乘積也是無(wú)窮;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.
5、極限存在準(zhǔn)則兩個(gè)重要極限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夾逼準(zhǔn)則如果數(shù)列{xn}、{yn}、{zn}滿足下列條件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,對(duì)于函數(shù)該準(zhǔn)則也成立。單調(diào)有界數(shù)列必有極限。
6、函數(shù)的連續(xù)性設(shè)函數(shù)y=f(x)在點(diǎn)x0的某一鄰域內(nèi)有定義,如果函數(shù)f(x)當(dāng)x→x0時(shí)的極限存在,且等于它在點(diǎn)x0處的函數(shù)值f(x0),即lim(x→x0)f(x)=f(x0),那么就稱函數(shù)f(x)在點(diǎn)x0處連續(xù)。不連續(xù)情形:1、在點(diǎn)x=x0沒(méi)有定義;2、雖在x=x0有定義但lim(x→x0)f(x)不存在;3、雖在x=x0有定義且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)時(shí)則稱函數(shù)在x0處不連續(xù)或間斷。
如果x0是函數(shù)f(x)的間斷點(diǎn),但左極限及右極限都存在,則稱x0為函數(shù)f(x)的第一類間斷點(diǎn)(左右極限相等者稱可去間斷點(diǎn),不相等者稱為跳躍間斷點(diǎn))。非第一類間斷點(diǎn)的任何間斷點(diǎn)都稱為第二類間斷點(diǎn)(無(wú)窮間斷點(diǎn)和震蕩間斷點(diǎn))。
定理有限個(gè)在某點(diǎn)連續(xù)的函數(shù)的和、積、商(分母不為0)是個(gè)在該點(diǎn)連續(xù)的函數(shù)。定理如果函數(shù)f(x)在區(qū)間Ix上單調(diào)增加或減少且連續(xù),那么它的反函數(shù)x=f(y)在對(duì)應(yīng)的區(qū)間Iy={y|y=f(x),x∈Ix}上單調(diào)增加或減少且連續(xù)。反三角函數(shù)在他們的定義域內(nèi)都是連續(xù)的。
定理(最大值最小值定理)在閉區(qū)間上連續(xù)的函數(shù)在該區(qū)間上一定有最大值和最小值。如果函數(shù)在開(kāi)區(qū)間內(nèi)連續(xù)或函數(shù)在閉區(qū)間上有間斷點(diǎn),那么函數(shù)在該區(qū)間上就不一定有最大值和最小值。
定理(有界性定理)在閉區(qū)間上連續(xù)的函數(shù)一定在該區(qū)間上有界,即m≤f(x)≤M.定理(零點(diǎn)定理)設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),且f(a)與f(b)異號(hào)(即f(a)×f(b)2、定理(拉格朗日中值定理)如果函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),那么在開(kāi)區(qū)間(a,b)內(nèi)至少有一點(diǎn)ξ(a定理設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)具有一階和二階導(dǎo)數(shù),那么(1)若在(a,b)內(nèi)f"’(x)>0,則f(x)在閉區(qū)間[a,b]上的圖形是凹的;(2)若在(a,b)內(nèi)f"’(x)求平面圖形的面積(曲線圍成的面積)直角坐標(biāo)系下(含參數(shù)與不含參數(shù))
極坐標(biāo)系下(r,θ,x=rcosθ,y=rsinθ)(扇形面積公式S=R2θ/2)
旋轉(zhuǎn)體體積(由連續(xù)曲線、直線及坐標(biāo)軸所圍成的面積繞坐標(biāo)軸旋轉(zhuǎn)而成)(且體積V=∫abπ[f(x)]2dx,其中f(x)指曲線的方程)
平行截面面積為已知的立體體積(V=∫abA(x)dx,其中A(x)為截面面積)功、水壓力、引力
函數(shù)的平均值(平均值y=1/(b-a)*∫abf(x)dx)第七章多元函數(shù)微分法及其應(yīng)用
1、多元函數(shù)極限存在的條件極限存在是指P(x,y)以任何方式趨于P0(x0,y0)時(shí),函數(shù)都無(wú)限接近于A,如果P(x,y)以某一特殊方式,例如沿著一條定直線或定曲線趨于P0(x0,y0)時(shí),即使函數(shù)無(wú)限接近某一確定值,我們還不能由此斷定函數(shù)極限存在。反過(guò)來(lái),如果當(dāng)P(x,y)以不同方式趨于P0(x0,y0)時(shí),函數(shù)趨于不同的值,那么就可以斷定這函數(shù)的極限不存在。例如函數(shù):f(x,y)={0(xy)/(x^2+y^2)x^2+y^2≠0
2、多元函數(shù)的連續(xù)性定義設(shè)函數(shù)f(x,y)在開(kāi)區(qū)域(或閉區(qū)域)D內(nèi)有定義,P0(x0,y0)是D的內(nèi)點(diǎn)或邊界點(diǎn)且P0∈D,如果lim(x→x0,y→y0)f(x,y)=f(x0,y0)則稱f(x,y)在點(diǎn)P0(x0,y0)連續(xù)。
性質(zhì)(最大值和最小值定理)在有界閉區(qū)域D上的多元連續(xù)函數(shù),在D上一定有最大值和最小值。
性質(zhì)(介值定理)在有界閉區(qū)域D上的多元連續(xù)函數(shù),如果在D上取得兩個(gè)不同的函數(shù)值,則它在D上取得介于這兩個(gè)值之間的任何值至少一次。
3、多元函數(shù)的連續(xù)與可導(dǎo)如果一元函數(shù)在某點(diǎn)具有導(dǎo)數(shù),則它在該點(diǎn)必定連續(xù),但對(duì)于多元函數(shù)來(lái)說(shuō),即使各偏導(dǎo)數(shù)在某點(diǎn)都存在,也不能保證函數(shù)在該點(diǎn)連續(xù)。這是因?yàn)楦髌珜?dǎo)數(shù)存在只能保證點(diǎn)P沿著平行于坐標(biāo)軸的方向趨于P0時(shí),函數(shù)值f(P)趨于f(P0),但不能保證點(diǎn)P按任何方式趨于P0時(shí),函數(shù)值f(P)都趨于f(P0)。
4、多元函數(shù)可微的必要條件一元函數(shù)在某點(diǎn)的導(dǎo)數(shù)存在是微分存在的充分必要條件,但多元函數(shù)各偏導(dǎo)數(shù)存在只是全微分存在的必要條件而不是充分條件,即可微=>可偏導(dǎo)。5、多元函數(shù)可微的充分條件定理(充分條件)如果函數(shù)z=f(x,y)的偏導(dǎo)數(shù)存在且在點(diǎn)(x,y)連續(xù),則函數(shù)在該點(diǎn)可微分。
6.多元函數(shù)極值存在的必要、充分條件定理(必要條件)設(shè)函數(shù)z=f(x,y)在點(diǎn)(x0,y0)具有偏導(dǎo)數(shù),且在點(diǎn)(x0,y0)處有極值,則它在該點(diǎn)的偏導(dǎo)數(shù)必為零。定理(充分條件)設(shè)函數(shù)z=f(x,y)在點(diǎn)(x0,y0)的某鄰域內(nèi)連續(xù)且有一階及二階連續(xù)偏導(dǎo)數(shù),又fx(x0,y0)=0,fy(x0,y0)=0,令fxx(x0,y0)=0=A,fxy(x0,y0)=B,fyy(x0,y0)=C,則f(x,y)在點(diǎn)(x0,y0)處是否取得極值的條件如下:(1)AC-B2>0時(shí)具有極值,且當(dāng)A0時(shí)有極小值;(2)AC-B2
擴(kuò)展閱讀:考研數(shù)學(xué)高數(shù)定理定義總結(jié)
考研數(shù)學(xué)高數(shù)定理定義總結(jié)
第一章函數(shù)與極限
1、函數(shù)的有界性在定義域內(nèi)有f(x)≥K1則函數(shù)f(x)在定義域上有下界,K1為下界;如果有f(x)≤K2,則有上界,K2稱為上界。函數(shù)f(x)在定義域內(nèi)有界的充分必要條件是在定義域內(nèi)既有上界又有下界。
2、數(shù)列的極限定理(極限的唯一性)數(shù)列{xn}不能同時(shí)收斂于兩個(gè)不同的極限。定理(收斂數(shù)列的有界性)如果數(shù)列{xn}收斂,那么數(shù)列{xn}一定有界。
如果數(shù)列{xn}無(wú)界,那么數(shù)列{xn}一定發(fā)散;但如果數(shù)列{xn}有界,卻不能斷定數(shù)列{xn}一定收斂,例如數(shù)列1,-1,1,-1,(-1)n+1…該數(shù)列有界但是發(fā)散,所以數(shù)列有界是數(shù)列收斂的必要條件而不是充分條件。
定理(收斂數(shù)列與其子數(shù)列的關(guān)系)如果數(shù)列{xn}收斂于a,那么它的任一子數(shù)列也收斂于a.如果數(shù)列{xn}有兩個(gè)子數(shù)列收斂于不同的極限,那么數(shù)列{xn}是發(fā)散的,如數(shù)列1,-1,1,-1,(-1)n+1…中子數(shù)列{x2k-1}收斂于1,{xnk}收斂于-1,{xn}卻是發(fā)散的;同時(shí)一個(gè)發(fā)散的數(shù)列的子數(shù)列也有可能是收斂的。
3、函數(shù)的極限函數(shù)極限的定義中00(或A0(或f(x)>0),反之也成立。
函數(shù)f(x)當(dāng)x→x0時(shí)極限存在的充分必要條件是左極限右極限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等則limf(x)不存在。
一般的說(shuō),如果lim(x→∞)f(x)=c,則直線y=c是函數(shù)y=f(x)的圖形水平漸近線。如果lim(x→x0)f(x)=∞,則直線x=x0是函數(shù)y=f(x)圖形的鉛直漸近線。
4、極限運(yùn)算法則定理有限個(gè)無(wú)窮小之和也是無(wú)窮。挥薪绾瘮(shù)與無(wú)窮小的乘積是無(wú)窮;常數(shù)與無(wú)窮小的乘積是無(wú)窮;有限個(gè)無(wú)窮小的乘積也是無(wú)窮。欢ɡ砣绻鸉1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.
5、極限存在準(zhǔn)則兩個(gè)重要極限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夾逼準(zhǔn)則如果數(shù)列{xn}、{yn}、{zn}滿足下列條件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,對(duì)于函數(shù)該準(zhǔn)則也成立。
單調(diào)有界數(shù)列必有極限。
6、函數(shù)的連續(xù)性設(shè)函數(shù)y=f(x)在點(diǎn)x0的某一鄰域內(nèi)有定義,如果函數(shù)f(x)當(dāng)x→x0時(shí)的極限存在,且等于它在點(diǎn)x0處的函數(shù)值f(x0),即lim(x→x0)f(x)=f(x0),那么就稱函數(shù)f(x)在點(diǎn)x0處連續(xù)。
不連續(xù)情形:1、在點(diǎn)x=x0沒(méi)有定義;2、雖在x=x0有定義但lim(x→x0)f(x)不存在;3、雖在x=x0有定義且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)時(shí)則稱函數(shù)在x0處不連續(xù)或間斷。
如果x0是函數(shù)f(x)的間斷點(diǎn),但左極限及右極限都存在,則稱x0為函數(shù)f(x)的第一類間斷點(diǎn)(左右極限相等者稱可去間斷點(diǎn),不相等者稱為跳躍間斷點(diǎn))。非第一類間斷點(diǎn)的任何間斷點(diǎn)都稱為第二類間斷點(diǎn)(無(wú)窮間斷點(diǎn)和震蕩間斷點(diǎn))。
定理有限個(gè)在某點(diǎn)連續(xù)的函數(shù)的和、積、商(分母不為0)是個(gè)在該點(diǎn)連續(xù)的函數(shù)。定理如果函數(shù)f(x)在區(qū)間Ix上單調(diào)增加或減少且連續(xù),那么它的反函數(shù)x=f(y)在對(duì)應(yīng)的區(qū)間Iy={y|y=f(x),x∈Ix}上單調(diào)增加或減少且連續(xù)。反三角函數(shù)在他們的定義域內(nèi)都是連續(xù)的。定理(最大值最小值定理)在閉區(qū)間上連續(xù)的函數(shù)在該區(qū)間上一定有最大值和最小值。如果函數(shù)在開(kāi)區(qū)間內(nèi)連續(xù)或函數(shù)在閉區(qū)間上有間斷點(diǎn),那么函數(shù)在該區(qū)間上就不一定有最大值和最小值。
定理(有界性定理)在閉區(qū)間上連續(xù)的函數(shù)一定在該區(qū)間上有界,即m≤f(x)≤M.定理(零點(diǎn)定理)設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),且f(a)與f(b)異號(hào)(即f(a)×f(b)函數(shù)在該點(diǎn)處可導(dǎo);函數(shù)f(x)在點(diǎn)x0處可微的充分必要條件是函數(shù)在該點(diǎn)處可導(dǎo)。
第三章中值定理與導(dǎo)數(shù)的應(yīng)用
1、定理(羅爾定理)如果函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),且在區(qū)間端點(diǎn)的函數(shù)值相等,即f(a)=f(b),那么在開(kāi)區(qū)間(a,b)內(nèi)至少有一點(diǎn)ξ(a臨近的值時(shí),f’(x)恒為負(fù);當(dāng)x去x0右側(cè)臨近的值時(shí),f’(x)恒為正,那么函數(shù)f(x)在x0處取得極小值;(3)如果當(dāng)x取x0左右兩側(cè)臨近的值時(shí),f’(x)恒為正或恒為負(fù),那么函數(shù)f(x)在x0處沒(méi)有極值。
定理(函數(shù)取得極值的第二種充分條件)設(shè)函數(shù)f(x)在x0處具有二階導(dǎo)數(shù)且f’(x0)=0,f’’(x0)≠0那么:(1)當(dāng)f’’(x0)0時(shí),函數(shù)f(x)在x0處取得極小值;駐點(diǎn)有可能是極值點(diǎn),不是駐點(diǎn)也有可能是極值點(diǎn)。
7、函數(shù)的凹凸性及其判定設(shè)f(x)在區(qū)間Ix上連續(xù),如果對(duì)任意兩點(diǎn)x1,x2恒有f[(x1+x2)/2][f(x1)+f(x1)]/2,那么稱f(x)在區(qū)間Ix上圖形是凸的。
定理設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)具有一階和二階導(dǎo)數(shù),那么(1)若在(a,b)內(nèi)f’’(x)>0,則f(x)在閉區(qū)間[a,b]上的圖形是凹的;(2)若在(a,b)內(nèi)f’’(x)可積。
定理設(shè)f(x)在區(qū)間[a,b]上有界,且只有有限個(gè)間斷點(diǎn),則f(x)在區(qū)間[a,b]上可積。3、定積分的若干重要性質(zhì)性質(zhì)如果在區(qū)間[a,b]上f(x)≥0則∫abf(x)dx≥0.推論如果在區(qū)間[a,b]上f(x)≤g(x)則∫abf(x)dx≤∫abg(x)dx.推論|∫abf(x)dx|≤∫ab|f(x)|dx.性質(zhì)設(shè)M及m分別是函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值,則m(b-a)≤∫abf(x)dx≤M(b-a),該性質(zhì)說(shuō)明由被積函數(shù)在積分區(qū)間上的最大值及最小值可以估計(jì)積分值的大致范圍。
性質(zhì)(定積分中值定理)如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),則在積分區(qū)間[a,b]上至少存在一個(gè)點(diǎn)ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。
4、關(guān)于廣義積分設(shè)函數(shù)f(x)在區(qū)間[a,b]上除點(diǎn)c(a直角坐標(biāo)系下(含參數(shù)與不含參數(shù))
極坐標(biāo)系下(r,θ,x=rcosθ,y=rsinθ)(扇形面積公式S=R2θ/2)
旋轉(zhuǎn)體體積(由連續(xù)曲線、直線及坐標(biāo)軸所圍成的面積繞坐標(biāo)軸旋轉(zhuǎn)而成)(且體積V=∫abπ*f(x)+2dx,其中f(x)指曲線的方程)
平行截面面積為已知的立體體積(V=∫abA(x)dx,其中A(x)為截面面積)功、水壓力、引力
函數(shù)的平均值(平均值y=1/(b-a)*∫abf(x)dx)
第七章多元函數(shù)微分法及其應(yīng)用
1、多元函數(shù)極限存在的條件極限存在是指P(x,y)以任何方式趨于P0(x0,y0)時(shí),函數(shù)都無(wú)限接近于A,如果P(x,y)以某一特殊方式,例如沿著一條定直線或定曲線趨于P0(x0,y0)時(shí),即使函數(shù)無(wú)限接近某一確定值,我們還不能由此斷定函數(shù)極限存在。反過(guò)來(lái),如果當(dāng)P(x,y)以不同方式趨于P0(x0,y0)時(shí),函數(shù)趨于不同的值,那么就可以斷定這函數(shù)的極限不存在。例如函數(shù):f(x,y)=,0(xy)/(x^2+y^2)x^2+y^2≠0
2、多元函數(shù)的連續(xù)性定義設(shè)函數(shù)f(x,y)在開(kāi)區(qū)域(或閉區(qū)域)D內(nèi)有定義,P0(x0,y0)是D的內(nèi)點(diǎn)或邊界點(diǎn)且P0∈D,如果lim(x→x0,y→y0)f(x,y)=f(x0,y0)則稱f(x,y)在點(diǎn)P0(x0,y0)連續(xù)。
性質(zhì)(最大值和最小值定理)在有界閉區(qū)域D上的多元連續(xù)函數(shù),在D上一定有最大值和最小值。
性質(zhì)(介值定理)在有界閉區(qū)域D上的多元連續(xù)函數(shù),如果在D上取得兩個(gè)不同的函數(shù)值,則它在D上取得介于這兩個(gè)值之間的任何值至少一次。
3、多元函數(shù)的連續(xù)與可導(dǎo)如果一元函數(shù)在某點(diǎn)具有導(dǎo)數(shù),則它在該點(diǎn)必定連續(xù),但對(duì)于多元函數(shù)來(lái)說(shuō),即使各偏導(dǎo)數(shù)在某點(diǎn)都存在,也不能保證函數(shù)在該點(diǎn)連續(xù)。這是因?yàn)楦髌珜?dǎo)數(shù)存在只能保證點(diǎn)P沿著平行于坐標(biāo)軸的方向趨于P0時(shí),函數(shù)值f(P)趨于f(P0),但不能保證點(diǎn)P按任何方式趨于P0時(shí),函數(shù)值f(P)都趨于f(P0)。
4、多元函數(shù)可微的必要條件一元函數(shù)在某點(diǎn)的導(dǎo)數(shù)存在是微分存在的充分必要條件,但多元函數(shù)各偏導(dǎo)數(shù)存在只是全微分存在的必要條件而不是充分條件,即可微=>可偏導(dǎo)。5、多元函數(shù)可微的充分條件定理(充分條件)如果函數(shù)z=f(x,y)的偏導(dǎo)數(shù)存在且在點(diǎn)(x,y)連續(xù),則函數(shù)在該點(diǎn)可微分。6.多元函數(shù)極值存在的必要、充分條件定理(必要條件)設(shè)函數(shù)z=f(x,y)在點(diǎn)(x0,y0)具有偏導(dǎo)數(shù),且在點(diǎn)(x0,y0)處有極值,則它在該點(diǎn)的偏導(dǎo)數(shù)必為零。
定理(充分條件)設(shè)函數(shù)z=f(x,y)在點(diǎn)(x0,y0)的某鄰域內(nèi)連續(xù)且有一階及二階連續(xù)偏導(dǎo)數(shù),又fx(x0,y0)=0,fy(x0,y0)=0,令fxx(x0,y0)=0=A,fxy(x0,y0)=B,fyy(x0,y0)=C,則f(x,y)在點(diǎn)(x0,y0)處是否取得極值的條件如下:(1)AC-B2>0時(shí)具有極值,且當(dāng)A0時(shí)有極小值;(2)AC-B2平面薄片的轉(zhuǎn)動(dòng)慣量(Ix=∫∫y2ρ(x,y)d,Iy=∫∫x2ρ(x,y)d;其中ρ(x,y)為在點(diǎn)(x,y)處的密度。
平面薄片對(duì)質(zhì)點(diǎn)的引力(FxFyFz)
2、二重積分存在的條件當(dāng)f(x,y)在閉區(qū)域D上連續(xù)時(shí),極限存在,故函數(shù)f(x,y)在D上的二重積分必定存在。
3、二重積分的一些重要性質(zhì)性質(zhì)如果在D上,f(x,y)≤ψ(x,y),則有不等式∫∫f(x,y)dxdy≤∫∫ψ(x,y)dxdy,特殊地由于-|f(x,y)|≤f(x,y)≤|f(x,y)|又有不等式|∫∫f(x,y)dxdy|≤∫∫|f(x,y)|dxdy.性質(zhì)設(shè)M,m分別是f(x,y)在閉區(qū)域D上的最大值和最小值,是D的面積,則有m≤∫∫f(x,y)d≤M。
性質(zhì)(二重積分的中值定理)設(shè)函數(shù)f(x,y)在閉區(qū)域D上連續(xù),是D的面積,則在D上至少存在一點(diǎn)(ξ,η)使得下式成立:∫∫f(x,y)d=f(ξ,η)*4、二重積分中標(biāo)量在直角與極坐標(biāo)系中的轉(zhuǎn)換把二重積分從直角坐標(biāo)系換為極坐標(biāo)系,只要把被積函數(shù)中的x,y分別換成ycosθ、rsinθ,并把直角坐標(biāo)系中的面積元素dxd來(lái)源:考試大-考研站
友情提示:本文中關(guān)于《高數(shù)定理定義總結(jié)》給出的范例僅供您參考拓展思維使用,高數(shù)定理定義總結(jié):該篇文章建議您自主創(chuàng)作。
來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問(wèn)題,請(qǐng)聯(lián)系我們及時(shí)刪除。