高中初等函數(shù)圖像性質(zhì)總結(jié)
高中函數(shù)圖像性質(zhì)總結(jié)
一、指數(shù)函數(shù)yax(a0且a1)
1、指數(shù)函數(shù)的圖象和性質(zhì)xya01圖象定義域值域性質(zhì)定點(diǎn)R(0,+∞)過(guò)定點(diǎn)(0,1),即x=0時(shí),y=1(1)a>1,當(dāng)x>0時(shí),y>1;當(dāng)x<0時(shí),0
二、ylogaxα>0且α≠11、對(duì)數(shù)函數(shù)的圖象和性質(zhì)
ylogax01圖象定義域值域(0,+∞)R(1)過(guò)定點(diǎn)(1,0),即x=1時(shí),y=0(2)在R上是減函數(shù)(2)在R上是增函數(shù)(3)同正異負(fù),即01,x>1時(shí),logax>0;01或a>1,0
(-∞,+∞)4ac-b2(-∞,]4a在x∈(-∞,-]上2a單調(diào)遞增在x∈[-圖象解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a
擴(kuò)展閱讀:高中初等函數(shù)圖像性質(zhì)總結(jié)
高中函數(shù)圖像性質(zhì)總結(jié)
一、指數(shù)函數(shù)yax(a0且a1)
1、指數(shù)函數(shù)的圖象和性質(zhì)
yax01圖象定義域值域性質(zhì)定點(diǎn)R(0,+∞)過(guò)定點(diǎn)(0,1),即x=0時(shí),y=1(1)a>1,當(dāng)x>0時(shí),y>1;當(dāng)x<0時(shí),0
2、第一象限:底數(shù)越大,圖像越高
二、ylogax1、對(duì)數(shù)函數(shù)的圖象和性質(zhì)
ylogax圖象01定義域值域(0,+∞)R(1)過(guò)定點(diǎn)(1,0),即x=1時(shí),y=0(2)在R上是減函數(shù)(2)在R上是增函數(shù)(3)同正異負(fù),即01,x>1時(shí),logax>0;01或a>1,0
解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a頂點(diǎn)對(duì)稱性2、一元二次函數(shù)表達(dá)式形式:b4ac-b2(-,)2a4a圖象關(guān)于直線x=-成軸對(duì)稱圖形2ab頂點(diǎn)式:f(x)=a(x-h(huán))2+k,定點(diǎn)坐標(biāo)(h,k)
分解式:f(x)=a(x-x1)(x-x2),一元二次方程的兩根為x1,x2一般式:f(x)=ax2+bx+c,(a≠0).
1.一次函數(shù)(包括正比例函數(shù))
最簡(jiǎn)單最常見(jiàn)的函數(shù),在平面直角坐標(biāo)系上的圖象為直線。
定義域(下面沒(méi)有說(shuō)明的話,都是在無(wú)特殊要求情況下的定義域):R值域:R奇偶性:無(wú)周期性:無(wú)
平面直角坐標(biāo)系解析式(下簡(jiǎn)稱解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式]
(k為直線斜率,b為直線縱截距,正比例函數(shù)b=0)③y-y1=k(x-x1)[點(diǎn)斜式]
(k為直線斜率,(x1,y1)為該直線所過(guò)的一個(gè)點(diǎn))④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[兩點(diǎn)式]((x1,y1)與(x2,y2)為直線上的兩點(diǎn))⑤x/a-y/b=0[截距式]
(a、b分別為直線在x、y軸上的截距)解析式表達(dá)局限性:
①所需條件較多(3個(gè));
②、③不能表達(dá)沒(méi)有斜率的直線(平行于x軸的直線);④參數(shù)較多,計(jì)算過(guò)于煩瑣;
⑤不能表達(dá)平行于坐標(biāo)軸的直線和過(guò)圓點(diǎn)的直線。
傾斜角:x軸到直線的角(直線與x軸正方向所成的角)稱為直線的傾斜角。設(shè)一直線的傾斜角為a,則該直線的斜率k=tg(a)。
2.二次函數(shù):
題目中常見(jiàn)的函數(shù),在平面直角坐標(biāo)系上的圖象是一條對(duì)稱軸與y軸平行的拋物線。
定義域:R
值域:(對(duì)應(yīng)解析式,且只討論a大于0的情況,a小于0的情況請(qǐng)讀者自行推斷)①[(4ac-b^2)/4a,正無(wú)窮);②[t,正無(wú)窮)奇偶性:偶函數(shù)周期性:無(wú)解析式:
①y=ax^2+bx+c[一般式]⑴a≠0
⑵a>0,則拋物線開(kāi)口朝上;a<0,則拋物線開(kāi)口朝下;⑶極值點(diǎn):(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,
Δ>0,圖象與x軸交于兩點(diǎn):
([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,圖象與x軸交于一點(diǎn):(-b/2a,0);
Δ<0,圖象與x軸無(wú)交點(diǎn);②y=a(x-h)^2+t[配方式]
此時(shí),對(duì)應(yīng)極值點(diǎn)為(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);
3.反比例函數(shù)
在平面直角坐標(biāo)系上的圖象為雙曲線。定義域:(負(fù)無(wú)窮,0)∪(0,正無(wú)窮)值域:(負(fù)無(wú)窮,0)∪(0,正無(wú)窮)奇偶性:奇函數(shù)周期性:無(wú)解析式:y=1/x
4.冪函數(shù)y=x^a①y=x^3定義域:R值域:R
奇偶性:奇函數(shù)周期性:無(wú)
圖象類似于將一個(gè)過(guò)圓點(diǎn)的二次函數(shù)的第四區(qū)間部分關(guān)于x軸作軸對(duì)稱后得到的圖象(類比,這個(gè)方法不能得到三次函數(shù)圖象)②y=x^(1/2)
定義域:[0,正無(wú)窮)值域:[0,正無(wú)窮)
奇偶性:無(wú)(即非奇非偶)周期性:無(wú)
圖象類似于將一個(gè)過(guò)圓點(diǎn)的二次函數(shù)以原點(diǎn)為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°,再去掉y軸下方部分得到的圖象(類比,這個(gè)方法不能得到三次函數(shù)圖象)
5.指數(shù)函數(shù)在平面直角坐標(biāo)系上的圖象(太難描述了,說(shuō)一下性質(zhì)吧……)
恒過(guò)點(diǎn)(0,1)。聯(lián)系解析式,若a>1則函數(shù)在定義域上單調(diào)增;若0<a<1則函數(shù)在定義域上單調(diào)減。定義域:R
值域:(0,正無(wú)窮)奇偶性:無(wú)周期性:無(wú)解析式:y=a^xa>0
性質(zhì):與對(duì)數(shù)函數(shù)y=log(a)x互為反函數(shù)。
*對(duì)數(shù)表達(dá):log(a)x表示以a為底的x的對(duì)數(shù)。
6.對(duì)數(shù)函數(shù)
在定義域上的圖象與對(duì)應(yīng)的指數(shù)函數(shù)(該對(duì)數(shù)函數(shù)的反函數(shù))的圖象關(guān)于直線y=x軸對(duì)稱。
恒過(guò)定點(diǎn)(1,0)。聯(lián)系解析式,若a>1則函數(shù)在定義域上單調(diào)增;若0<a<1則函數(shù)在定義域上單調(diào)減。定義域:(0,正無(wú)窮)值域:R奇偶性:無(wú)周期性:無(wú)
解析式:y=log(a)xa>0
性質(zhì):與對(duì)數(shù)函數(shù)y=a^x互為反函數(shù)。
7.三角函數(shù)
⑴正弦函數(shù):y=sinx
圖象為正弦曲線(一種波浪線,是所有曲線的基礎(chǔ))定義域:R值域:[-1,1]奇偶性:奇函數(shù)
周期性:最小正周期為2π對(duì)稱軸:直線x=kπ/2(k∈Z)
中心對(duì)稱點(diǎn):與x軸的交點(diǎn):(kπ,0)(k∈Z)
⑵余弦函數(shù):y=cosx
圖象為正弦曲線,由正弦函數(shù)的圖象向左平移π/2個(gè)單位(最小平移量)所得。定義域:R值域:[-1,1]奇偶性:偶函數(shù)
周期性:最小正周期為2π對(duì)稱軸:直線x=kπ(k∈Z)中心對(duì)稱點(diǎn):與x軸的交點(diǎn):(π/2+kπ,0)(k∈Z)
⑶正切函數(shù):y=tgx
圖象的每個(gè)周期單位很像是三次函數(shù),很多個(gè),均勻分布在x軸上。定義域:{x│x≠π/2+kπ}值域:R
奇偶性:奇函數(shù)
周期性:最小正周期為π對(duì)稱軸:無(wú)
中心對(duì)稱點(diǎn):與x軸的交點(diǎn):(kπ,0)(k∈Z)。
友情提示:本文中關(guān)于《高中初等函數(shù)圖像性質(zhì)總結(jié)》給出的范例僅供您參考拓展思維使用,高中初等函數(shù)圖像性質(zhì)總結(jié):該篇文章建議您自主創(chuàng)作。
來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問(wèn)題,請(qǐng)聯(lián)系我們及時(shí)刪除。