大一上學(xué)期高數(shù)期末考試題(見解)
高數(shù)期末考試
一、填空題(本大題有4小題,每小題4分,共16分)
已知cosxx是f(x)的一個(gè)原函數(shù),則f(x)cosxxdx1.
.212.
limnn(cosncos22ncos2nn).
122xarcsinx1dx3.-11x22.
二、單項(xiàng)選擇題(本大題有4小題,每小題4分,共16分)4.
設(shè)(x)1x1x,(x)333x,則當(dāng)x1時(shí)( 。.
(A)(x)與(x)是同階無窮小,但不是等價(jià)無窮;(B)(x)與(x)是等價(jià)無窮小;
(C)(x)是比(x)高階的無窮;(D)(x)是比(x)高階的無窮小.
5.設(shè)f(x)cosx(xsinx),則在x0處有( ).
(A)f(0)2(B)f(0)1(C)f(0)0(D)f(x)不可導(dǎo).
6.若
F(x)x0(2tx)f(t)dt,其中f(x)在區(qū)間上(1,1)二階可導(dǎo)且
f(x)0,則().
(A)函數(shù)F(x)必在x0處取得極大值;(B)函數(shù)F(x)必在x0處取得極小值;
(C)函數(shù)F(x)在x0處沒有極值,但點(diǎn)(0,F(0))為曲線yF(x)的拐點(diǎn);(D)函數(shù)F(x)在x0處沒有極值,點(diǎn)(0,F(0))也不是曲線yF(x)的拐點(diǎn)。
f(x)是連續(xù)函數(shù),且f(x)x217.
設(shè)0f(t)dt,則f(x)(x2x2(A)2(B)22(C)x1(D)x2.
8.三、解答題(本大題有5小題,每小題8分,共40分)9.設(shè)函數(shù)yy(x)由方程exysin(xy)1確定,求y(x)以及y(0).
求1x710.
x(1x7)dx.)nu,dxxn1axax11nxdxdunnn1nxQ(x)xQ(x)nxnnduaxnnxnQ(x)du1dnuQ(u)au11.
xxe, x0設(shè)f(x) 求22xx,0x113f(x)dx.元,去,在有√的公式中,尤其是多項(xiàng)1式,要盡可能變形,換12.
0設(shè)函數(shù)f(x)連續(xù),,且x0g(x)并討論g(x)在x0處的連續(xù)性.
g(x)f(xt)dtlimf(x)xA,A為常數(shù).求
13.求微分方程xy2yxlnx滿足14.已知上半平面內(nèi)一曲線yy(x)9的解.
四、解答題(本大題10分)
(x0),過點(diǎn)(0,1)y(1)1,且曲線上任一點(diǎn)
M(x0,y0)處切線斜率數(shù)值上等于此曲線與x軸、y軸、直線xx0所圍成
面積的2倍與該點(diǎn)縱坐標(biāo)之和,求此曲線方程.五、解答題(本大題10分)
15.過坐標(biāo)原點(diǎn)作曲線
ylnx的切線,該切線與曲線ylnx及x軸圍
成平面圖形D.
(1)求D的面積A;(2)求D繞直線x=e旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積
V.六、證明題(本大題有2小題,每小題4分,共8分)
16.設(shè)函數(shù)
qf(x)在0,1上連續(xù)且單調(diào)遞減,證明對任意的q[0,1],
10f(x)dxqf(x)dx0a0,1.f(x)在上連續(xù)且單調(diào)遞減是關(guān)鍵,要想
到定積分的中值定理,f(x)dxf()(ab),這樣就會把單調(diào)性聯(lián)系起
b來。
17.設(shè)函數(shù)
f(x)在0,上連續(xù),且
0f(x)dx0,0f(x)cosxdx0.
證明:在0,內(nèi)至少存在兩個(gè)不同的點(diǎn)1,2,使f(1)f(2)0.(提
xF(x)示:設(shè)
0f(x)dx)
解答一、單項(xiàng)選擇題(本大題有4小題,每小題4分,共16分)1、D2、A3、C4、C
二、填空題(本大題有4小題,每小題4分,共16分)
e35.
三、解答題(本大題有5小題,每小題8分,共40分)9.解:方程兩邊求導(dǎo)
61cosx2 ()cx.6.2.7.2.8.
.exy(1y)coxys(xy)(yxyxy)xcos(xy)
x0,y0,y(0)1767xdxdu10.解:ux y(x)eeycos(xy)原式17u(1u)(1u)du17(1u2u1)du17171(ln|u|2ln|u1|)cln|x|72xxdx2227ln|1x|C711.解:3f(x)dxxd(ex03xe10xdx1003)01(x1)dxxxxee302cosd (令x1sin)212.解:由f(0)0,知g(0)0。
4x1xtu2e130f(u)duxg(x)
g(x)0f(xt)dtx(x0)
xf(x)x02f(u)du(x0)
xg(0)lim0x0f(u)dux2limxf(x)2xx0A2
A2xf(x)x02f(u)duA
limg(x)limx0A2x0,g(x)在x0處連續(xù)。dy13.解:dx
2x2ylnx2
lnxdxC)2yexdx(exdx
13xlnx1C,19xCx1
xlnx19x93,
四、解答題(本大題10分)
xy(1)0y
14.解:由已知且
y2ydxy0,
23,將此方程關(guān)于x求導(dǎo)得y2yy
2特征方程:rr20
解出特征根:r11,r22.
2x其通解為
yC1exC2e
C213
代入初始條件y(0)y(0)1,得
3故所求曲線方程為:
五、解答題(本大題10分)
y2exC1e2x13
ylnx01x0(xx0)15.解:(1)根據(jù)題意,先設(shè)切點(diǎn)為(x0,lnx0),切線方程:由于切線過原點(diǎn),解出x0e1
,從而切線方程為:
12e1y1ex
A則平面圖形面積
(e0yey)dy
V113(2)三角形繞直線x=e一周所得圓錐體體積記為V1,則
e2曲線ylnx與x軸及直線x=e所圍成的圖形繞直線x=e一周所得旋轉(zhuǎn)體體積為V2
1V2(ee)dy0y2
VV1V26D繞直線x=e旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積
六、證明題(本大題有2小題,每小題4分,共12分)
q1qq(5e12e3)2
116.證明:0f(x)dxqf(x)dx00f(x)dxq(f(x)dx0qf(x)dx)這個(gè)只是書寫答案,q1f(x)dx0qqf(x)dx01qf(x)dx0qq[f(x)dxf(x)dx]q10(1q)f(x)dxqf(x)dx00不是思考答案,思考因該是反過來。
q(1q)f()q(1q)f()12
f()f(),12又1q2與已知條件單調(diào)性相符1。(1q)f(x)dxqf(x)dx0q
f(1)f(2)1[0,q]2[q,1]q(1q)f(1)q(1q)f(2)1故有:
q00f(x)dxqf(x)dx0證畢。
17.
xF(x)證:構(gòu)造輔助函數(shù):
0f(t)dt,0x。其滿足在[0,]上連續(xù),在(0,)上可導(dǎo)。F(x)f(x),且F(0)F()0
0由題設(shè),有
0f(x)cosxdxcosxdF(x)F(x)cosx|00sin0xF(x)dx,
有F(x)sin0xdx0,由積分中值定理,存在(0,),使F()sin0即
F()0
綜上可知F(0)F()F()0,(0,).在區(qū)間[0,],[,]上分別應(yīng)用羅爾定理,知存在
1(0,)和2(,),使F(1)0及F(2)0,即f(1)f(2)0.
擴(kuò)展閱讀:大一上學(xué)期高數(shù)期末考試題
高數(shù)期末考試
一、填空題(本大題有4小題,每小題4分,共16分)
已知cosxx是f(x)的一個(gè)原函數(shù),則f(x)cosxxdx1.
.212.
limnn(cosncos22ncos2nn).
122xarcsinx1dx3.-11x22.
二、單項(xiàng)選擇題(本大題有4小題,每小題4分,共16分)4.
設(shè)(x)1x1x,(x)333x,則當(dāng)x1時(shí)( 。.
(A)(x)與(x)是同階無窮小,但不是等價(jià)無窮小;(B)(x)與(x)是等價(jià)無窮小;
(C)(x)是比(x)高階的無窮小;(D)(x)是比(x)高階的無窮小.
5.設(shè)f(x)cosx(xsinx),則在x0處有( ).
(A)f(0)2(B)f(0)1(C)f(0)0(D)f(x)不可導(dǎo).
6.若
F(x)x0(2tx)f(t)dt,其中f(x)在區(qū)間上(1,1)二階可導(dǎo)且
f(x)0,則().
(A)函數(shù)F(x)必在x0處取得極大值;(B)函數(shù)F(x)必在x0處取得極小值;
(C)函數(shù)F(x)在x0處沒有極值,但點(diǎn)(0,F(0))為曲線yF(x)的拐點(diǎn);(D)函數(shù)F(x)在x0處沒有極值,點(diǎn)(0,F(0))也不是曲線yF(x)的拐點(diǎn)。
f(x)是連續(xù)函數(shù),且f(x)x217.
設(shè)0f(t)dt,則f(x)(x2x2(A)2(B)22(C)x1(D)x2.
8.三、解答題(本大題有5小題,每小題8分,共40分)9.設(shè)函數(shù)yy(x)由方程exysin(xy)1確定,求y(x)以及y(0).
求x710.
1x(1x7)dx.
)11.12.
xxe, x0設(shè)f(x) 求22xx,0x113f(x)dx.
xA10設(shè)函數(shù)f(x)連續(xù),,且x0g(x)并討論g(x)在x0處的連續(xù)性.
g(x)f(xt)dtlimf(x),A為常數(shù).求
13.求微分方程xy2yxlnx滿足14.已知上半平面內(nèi)一曲線yy(x)9的解.
四、解答題(本大題10分)
(x0),過點(diǎn)(0,1)y(1)1,且曲線上任一點(diǎn)
M(x0,y0)處切線斜率數(shù)值上等于此曲線與x軸、y軸、直線xx0所圍成
面積的2倍與該點(diǎn)縱坐標(biāo)之和,求此曲線方程.五、解答題(本大題10分)
15.過坐標(biāo)原點(diǎn)作曲線
ylnx的切線,該切線與曲線ylnx及x軸圍
成平面圖形D.
(1)求D的面積A;(2)求D繞直線x=e旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積
V.六、證明題(本大題有2小題,每小題4分,共8分)
16.設(shè)函數(shù)
qf(x)在0,1上連續(xù)且單調(diào)遞減,證明對任意的q[0,1],
10f(x)dxqf(x)dx0.
17.設(shè)函數(shù)
f(x)在0,上連續(xù),且
0f(x)dx0,0f(x)cosxdx0.
證明:在0,內(nèi)至少存在兩個(gè)不同的點(diǎn)1,2,使f(1)f(2)0.(提
xF(x)示:設(shè)
0f(x)dx)
解答
一、單項(xiàng)選擇題(本大題有4小題,每小題4分,共16分)
1、D2、A3、C4、C
二、填空題(本大題有4小題,每小題4分,共16分)
e35.
三、解答題(本大題有5小題,每小題8分,共40分)9.解:方程兩邊求導(dǎo)
xy)e(1y61cosx2 ()cx.6.2.7.2.8.
.coxys(xy)(y)xcos(xy)
x0,y0,y(0)1
767xdxdu10.解:ux y(x)eexyxyycos(xy)原式17u(1u)(1u)du17(1u2u1)du
17171(ln|u|2ln|u1|)cln|x|7
2xxdx2227ln|1x|C711.解:3f(x)dxxd(ex03xe10xdx10
03)01(x1)dx
xxxee302cosd (令x1sin)2
12.解:由f(0)0,知g(0)0。
4x1xtu2e130f(u)duxg(x)
g(x)0f(xt)dtx(x0)
xf(x)x02f(u)du(x0)
xg(0)lim0x0f(u)dux2limxf(x)2xx0A2
A2xf(x)x02f(u)duA
limg(x)limx0A2x0,g(x)在x0處連續(xù)。
dy13.解:dx
2x2ylnx2
lnxdxC)2yexdx(exdx
13xlnx19C,19xCx1
xlnx19x3,
四、解答題(本大題10分)
y(1)0y14.解:由已知且
y2ydxy0x,
23,將此方程關(guān)于x求導(dǎo)得y2yy
2特征方程:rr20
解出特征根:r11,r22.
2x其通解為
yC1exC2e
C213
代入初始條件y(0)y(0)1,得
3故所求曲線方程為:
五、解答題(本大題10分)
y2exC1e2x13
1x015.解:(1)根據(jù)題意,先設(shè)切點(diǎn)為(x0,lnx0),切線方程:由于切線過原點(diǎn),解出x0e1ylnx0(xx0)
,從而切線方程為:
12e1y1ex
A則平面圖形面積
(e0yey)dy
V113(2)三角形繞直線x=e一周所得圓錐體體積記為V1,則
e2曲線ylnx與x軸及直線x=e所圍成的圖形繞直線x=e一周所得旋轉(zhuǎn)體體積為V2
1V2(ee0y)dy2
VV1V26D繞直線x=e旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積
六、證明題(本大題有2小題,每小題4分,共12分)
q1qq(5e12e3)2
116.證明:0qf(x)dxqf(x)dx010f(x)dxq(f(x)dx0qf(x)dx)
(1q)f(x)dxqf(x)dx0q
f(1)f(2)1[0,q]2[q,1]q(1q)f(1)q(1q)f(2)1故有:
q00f(x)dxqf(x)dx0證畢。
x17.
F(x)證:構(gòu)造輔助函數(shù):
0f(t)dt,0x。其滿足在[0,]上連續(xù),在(0,)上可導(dǎo)。F(x)f(x),且F(0)F()0由題設(shè),有
0f(x)cosxdxcosxdF(x)F(x)cosx|00sin0xF(x)dx,
有F(x)sin0xdx0,由積分中值定理,存在(0,),使F()sin0即
F()0
綜上可知F(0)F()F()0,(0,).在區(qū)間[0,],[,]上分別應(yīng)用羅爾定理,知存在
1(0,)和2(,),使F(1)0及F(2)0,即f(1)f(2)0.
友情提示:本文中關(guān)于《大一上學(xué)期高數(shù)期末考試題(見解)》給出的范例僅供您參考拓展思維使用,大一上學(xué)期高數(shù)期末考試題(見解):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時(shí)刪除。