初二數學一次函數知識點總結
一次函數知識點總結
基本概念
1、變量:在一個變化過程中可以取不同數值的量。常量:在一個變化過程中只能取同一數值的量。
2、函數:一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數。
*判斷Y是否為X的函數,只要看X取值確定的時候,Y是否有唯一確定的值與之對應3、定義域:一般的,一個函數的自變量允許取值的范圍,叫做這個函數的定義域。(x的取值范圍)一次函數
1..自變量x和因變量y有如下關系:
y=kx+b(k為任意不為零實數,b為任意實數)則此時稱y是x的一次函數。特別的,當b=0時,y是x的正比例函數。即:y=kx(k為任意不為零實數)
定義域:自變量的取值范圍,自變量的取值應使函數有意義;要與實際有意義。2.當x=0時,b為函數在y軸上的截距。一次函數性質:
1在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。
2一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。3.函數不是數,它是指某一變量過程中兩個變量之間的關系。
特別地,當b=0時,直線通過原點O(0,0)表示的是正比例函數的圖像。這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。4、特殊位置關系
當平面直角坐標系中兩直線平行時,其函數解析式中K值(即一次項系數)相等
當平面直角坐標系中兩直線垂直時,其函數解析式中K值互為負倒數(即兩個K值的乘積為-1)
應用
一次函數y=kx+b的性質是:(1)當k>0時,y隨x的增大而增大;(2)當ky2,則x1與x2的大小關系是()
A.x1>x2B.x10,且y1>y2。根據一次函數的性質“當k>0時,y隨x的增大而增大”,得x1>x2。故選A。
判斷函數圖象的位置例3.一次函數y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數的圖象不經過()A.第一象限B.第二象限C.第三象限D.第四象限
解:由kb>0,知k、b同號。因為y隨x的增大而減小,所以k
(5)實際問題中,函數定義域還要和實際情況相符合,使之有意義。5、函數的圖像
一般來說,對于一個函數,如果把自變量與函數的每對對應值分別作為點的橫、縱坐標,那么坐標平面內由這些點組成的圖形,就是這個函數的圖象.
6、函數解析式:用含有表示自變量的字母的代數式表示因變量的式子叫做解析式。7、描點法畫函數圖形的一般步驟
第一步:列表(表中給出一些自變量的值及其對應的函數值);
第二步:描點(在直角坐標系中,以自變量的值為橫坐標,相應的函數值為縱坐標,描出表格中數值對應的各點);第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。8、函數的表示方法
列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數之間的對應規(guī)律。
解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數之間的相依關系,但有些實際問題中的函數關系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達兩個變量之間的函數關系。9、正比例函數及性質
一般地,形如y=kx(k是常數,k≠0)的函數叫做正比例函數,其中k叫做比例系數.注:正比例函數一般形式y=kx(k不為零)①k不為零②x指數為1③b取零解析式:y=kx(k是常數,k≠0)必過點:(0,0)、(1,k)
走向:k>0時,圖像經過一、三象限;k0,y隨x的增大而增大;k0時,向上平移;當b0,圖象經過第一、三象限;k0,圖象經過第一、二象限;b0,y隨x的增大而增大;k0時,將直線y=kx的圖象向上平移b個單位;當b
.函數y=ax+b與y=bx+a的圖象在同一坐標系內的大致位置正確的是()
將直線y=3x向下平移5個單位,得到直線;將直線y=-x-5向上平移5個單位,得到直線.若直線yxa和直線yxb的交點坐標為(m,8),則ab____________.
已知函數y=3x+1,當自變量增加m時,相應的函數值增加()A.3m+1B.3mC.mD.3m-111、一次函數y=kx+b的圖象的畫法.根據幾何知識:經過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數的圖象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:(0,b),坐標或縱坐標為0的點.
b>0經過第一、二、三象限b0圖象從左到右上升,y隨x的增大而增大經過第一、二、四象限經過第二、三、四象限經過第二、四象限k0時,向上平移;當b
(1)設一次函數的表達式(也叫解析式)為y=kx+b。(2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b①
和y2=kx2+b②
(3)解這個二元一次方程,得到k,b的值。(4)最后得到一次函數的表達式。15、一元一次方程與一次函數的關系
任何一元一次方程到可以轉化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:當某個一次函數的值為0時,求相應的自變量的值.從圖象上看,相當于已知直線y=ax+b確定它與x軸的交點的橫坐標的值.
擴展閱讀:初二上冊數學一次函數知識點總結(附加兩套習題與答案)
初中數學一次函數知識點總結
基本概念:1、變量:在一個變化過程中可以取不同數值的量。常量:在一個變化過程中只能取同一數值的量。
2、函數:一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數。
3、定義域:一般的,一個函數的自變量允許取值的范圍,叫做這個函數的定義域。
4、確定函數定義域的方法:
(1)關系式為整式時,函數定義域為全體實數;(2)關系式含有分式時,分式的分母不等于零;(3)關系式含有二次根式時,被開放方數大于等于零;(4)關系式中含有指數為零的式子時,底數不等于零;
(5)實際問題中,函數定義域還要和實際情況相符合,使之有意義。函數性質:
1.y的變化值與對應的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數,k≠0)。
2.當x=0時,b為函數在y軸上的點,坐標為(0,b)。
3當b=0時(即y=kx),一次函數圖像變?yōu)檎壤瘮,正比例函數是特殊的一次函數?/p>
4.在兩個一次函數表達式中:
當兩一次函數表達式中的k相同,b也相同時,兩一次函數圖像重合;當兩一次函數表達式中的k相同,b不相同時,兩一次函數圖像平行;當兩一次函數表達式中的k不相同,b不相同時,兩一次函數圖像相交;當兩一次函數表達式中的k不相同,b相同時,兩一次函數圖像交于y軸上的同一點(0,b)。
圖像性質
1.作法與圖形:(1)列表.
(2)描點;一般取兩個點,根據“兩點確定一條直線”的道理,也可叫“兩點法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點畫直線即可。
正比例函數y=kx(k≠0)的圖象是過坐標原點的一條直線,一般取(0,0)和(1,k)兩點。
2.性質:
(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像都是過原點。
3.函數不是數,它是指某一變化過程中兩個變量之間的關系。
一次函數的圖象特征和性質:y=kx+bk>b>0經過第一、二、三象b0限限象限經過第一、二、四象限k相當于已知直線y=ax+b確定它與x軸的交點的橫坐標的值.
2、一次函數與一元一次不等式的關系
任何一個一元一次不等式都可以轉化為ax+b>0或ax+b3B.0課堂上,李老師請學生畫出他行進的路程y(千米)與行進時間t(小時)的函數圖象的示意圖,同學們畫出的圖象如圖所示,你認為正確的是()
10.一次函數y=kx+b的圖象經過點(2,-1)和(0,3),那么這個一次函數的解析式為()A.y=-2x+3B.y=-3x+2C.y=3x-2D.y=二、你能填得又快又對嗎?(每小題3分,共30分)
11.已知自變量為x的函數y=mx+2-m是正比例函數,則m=________,該函數的解析式為_________.
12.若點(1,3)在正比例函數y=kx的圖象上,則此函數的解析式為________.
13.已知一次函數y=kx+b的圖象經過點A(1,3)和B(-1,-1),則此函數的解析式為_________.14.若解方程x+2=3x-2得x=2,則當x_________時直線y=x+2上的點在直線y=3x-2上相應點的上方.
15.已知一次函數y=-x+a與y=x+b的圖象相交于點(m,8),則a+b=_________.
16.若一次函數y=kx+b交于y軸的負半軸,且y的值隨x的增大而減少,則k____0,b______0.(填“>”、“
23.(12分)一農民帶了若干千克自產的土豆進城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售.售出土豆千克數與他手中持有的錢數(含備用
零錢)的關系如圖所示,結合圖象回答下列問題:(1)農民自帶的零錢是多少?(2)降價前他每千克土豆出售的價格是多少?
(3)降價后他按每千克0.4元將剩余土豆售完,這時他手中的錢(含備用零錢)是26元,問他一共帶了多少千克土豆?
24.(10分)如圖所示的折線ABC表示從甲地向乙地打長途電話所需的電話費y(元)與通話時間t(分鐘)之間的函數關系的圖象(1)寫出y與t之間的函數關系式.(2)通話2分鐘應付通話費多少元?通話7分鐘呢?
25.(12分)已知雅美服裝廠現有A種布料70米,B種布料52米,現計劃用這兩種布料生產M、N兩種型號的時裝共80套.已知做一套M型號的時裝需用A種布料1.1米,B種布料0.4米,可獲利50元;做一套N型號的時裝需用A種布料0.6米,B種布料0.9米,可獲利45元.設生產M型號的時裝套數為x,用這批布料生產兩種型號的時裝所獲得的總利潤為y元.
①求y(元)與x(套)的函數關系式,并求出自變量的取值范圍;②當M型號的時裝為多少套時,能使該廠所獲利潤最大?最大利潤是多?
八年級一次函數測試題
班級姓名得分
一.填空(每題4分,共32分)
1.已知一個正比例函數的圖象經過點(-2,4),則這個正比例函數的表達式是.2.已知一次函數y=kx+5的圖象經過點(-1,2),則k=.
3.一次函數y=-2x+4的圖象與x軸交點坐標是,與y軸交點坐標是圖象與坐標軸所圍成的三角形面積是.1
4.下列三個函數y=-2x,y=-x,y=(2-3)x共同點(1);
4(2);(3).
5.某種儲蓄的月利率為0.15%,現存入1000元,則本息和y(元)與所存月數x之間
的函數關系式是.6.寫出同時具備下列兩個條件的一次函數表達式(寫出一個即可).(1)y隨著x的增大而減小。(2)圖象經過點(1,-3)
7.某商店出售一種瓜子,其售價y(元)與瓜子質量x(千克)之間的關系如下表質量x(千克)12343.60+0.207.20+0.201*.80+0.20由上表得y與x之間的關系式是.8在計算器上按照下面的程序進行操作:
下表中的x與y分別是輸入的6個數及相應的計算結果:
上面操作程序中所按的第三個鍵和第四個
xy-2-5-1-201*427310鍵
售價y(元)14.40+0.2…………應是.二.選擇題(每題4分,共32分)
19.下列函數(1)y=πx(2)y=2x-1(3)y=(4)y=2-1-3x(5)y=x2-1中,是一次
x函數的有()(A)4個(B)3個(C)2個(D)1個110.已知點(-4,y1),(2,y2)都在直線y=-x+2上,則y1y2大小關系是()
2(A)y1>y2(B)y1=y2(C)y1
(A)(B)(C)y(D)12.已知一次函數y=kx+b的圖象如圖所示,則k,b的符號是()
(A)k>0,b>0(B)k>0,b
19.如圖是某出租車單程收費y(元)與行駛路程x(千米)之間的函數關系圖象,根據圖象回答下列問題
(1)當行駛8千米時,收費應為元
(2)從圖象上你能獲得哪些信息?(請寫出2條)
①②(3)求出收費y(元)與行使x(千米)(x≥3)之間的函數關系式
20.為了加強公民的節(jié)水意識,合理利用水資源,各地采用價格調控手段達到節(jié)約用水的目的,某市規(guī)定如下用水收費標準:每戶每月的用水量不超過6立方米時,水費按每立方米a元收費,超過6立方米時,不超過的部分每立方米仍按a元收費,超過的部分每立方米按c元收費,該市某戶今年9、10月份的用水量和所交水費如下表所示:設某戶每月用水量x(立方米),應交水費y(元)
(1)求a,c的值
(2)當x≤6,x≥6時,分別寫出y于x的函數
關系式
21.一農民帶上若干千克自產的土豆進城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售,售出的土豆千克數與他手中持有的錢數(含備用零錢)的關系,如圖所示,結合圖象回答下列問題.
(1)農民自帶的零錢是多少?
(2)試求降價前y與x之間的關系式
(3)由表達式你能求出降價前每千克的土豆價格是多少?(4)降價后他按每千克0.4元將剩余土豆售完,這時他手中的錢(含備用零錢)是26元,試問他一共帶了多少千克土豆?
月份910用水量(m3)597.527收費(元)(3)若該戶11月份用水量為8立方米,求該戶11月份水費是多少元?
答案:
第一份
3.B4.C5.D6.A7.C8.B9.C10.A11.2;y=2x12.y=3x13.y=2x+114.16.
友情提示:本文中關于《初二數學一次函數知識點總結》給出的范例僅供您參考拓展思維使用,初二數學一次函數知識點總結:該篇文章建議您自主創(chuàng)作。
來源:網絡整理 免責聲明:本文僅限學習分享,如產生版權問題,請聯系我們及時刪除。