久久久久综合给合狠狠狠,人人干人人模,大陆一级黄色毛片免费在线观看,亚洲人人视频,欧美在线观看一区二区,国产成人啪精品午夜在线观看,午夜免费体验

薈聚奇文、博采眾長(zhǎng)、見(jiàn)賢思齊
當(dāng)前位置:公文素材庫(kù) > 計(jì)劃總結(jié) > 工作總結(jié) > 高二數(shù)學(xué)選修2-1知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)選修2-1知識(shí)點(diǎn)總結(jié)

網(wǎng)站:公文素材庫(kù) | 時(shí)間:2019-05-28 22:20:46 | 移動(dòng)端:高二數(shù)學(xué)選修2-1知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)選修2-1知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)(上)期末復(fù)習(xí)部分知識(shí)點(diǎn)概要201*-1-5

高二數(shù)學(xué)選修2-1知識(shí)點(diǎn)

1、命題:用語(yǔ)言、符號(hào)或式子表達(dá)的,可以判斷真假的陳述句.真命題:判斷為真的語(yǔ)句.假命題:判斷為假的語(yǔ)句.2、“若p,則q”形式的命題中的p稱為命題的條件,q稱為命題的結(jié)論.

3、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論和條件,則這兩個(gè)命題稱為互逆命題.其中一個(gè)命題稱為原命題,另一個(gè)稱為原命題的逆命題.

若原命題為“若p,則q”,它的逆命題為“若q,則p”.4、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的條件的否定和結(jié)論的否定,則這兩個(gè)命題稱為互否命題.中一個(gè)命題稱為原命題,另一個(gè)稱為原命題的否命題.若原命題為“若p,則q”,則它的否命題為“若p,則q”.5、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的結(jié)論的否定和條件的否定,則這兩個(gè)命題稱為互為逆否命題.其中一個(gè)命題稱為原命題,另一個(gè)稱為原命題的逆否命題.若原命題為“若p,則q”,則它的否命題為“若q,則p”.6、四種命題的真假性:

原命題逆命題否命題逆否命題真真真真真假假真假真真真假假假假四種命題的真假性之間的關(guān)系:

1兩個(gè)命題互為逆否命題,它們有相同的真假性;

2兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.

7、若pq,則p是q的充分條件,q是p的必要條件.若pq,則p是q的充要條件(充分必要條件).

8、用聯(lián)結(jié)詞“且”把命題p和命題q聯(lián)結(jié)起來(lái),得到一個(gè)新命題,記作pq.當(dāng)p、q都是真命題時(shí),pq是真命題;當(dāng)p、q兩個(gè)命題中有一個(gè)命題是假命題時(shí),pq是假命題.

用聯(lián)結(jié)詞“或”把命題p和命題q聯(lián)結(jié)起來(lái),得到一個(gè)新命題,記作pq.當(dāng)p、q兩個(gè)命題中有一個(gè)命題是真命題時(shí),pq是真命題;當(dāng)p、q兩個(gè)命題都是假命題時(shí),pq是假命題.

對(duì)一個(gè)命題p全盤否定,得到一個(gè)新命題,記作p.

若p是真命題,則p必是假命題;若p是假命題,則p必是真命題.

9、短語(yǔ)“對(duì)所有的”、“對(duì)任意一個(gè)”在邏輯中通常稱為全稱量詞,用“”表示.含有全稱量詞的命題稱為全稱命題.

全稱命題“對(duì)中任意一個(gè)x,有px成立”,記作“x,px”.短語(yǔ)“存在一個(gè)”、“至少有一個(gè)”在邏輯中通常稱為存在量詞,用“”表示.含有存在量詞的命題稱為特稱命題.

1--高二數(shù)學(xué)(上)期末復(fù)習(xí)部分知識(shí)點(diǎn)概要201*-1-5

特稱命題“存在中的一個(gè)x,使px成立”,記作“x,px”.10、全稱命題p:x,px,它的否定p:x,px.全稱命題的否定是特稱命題.

11、平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離之和等于常數(shù)(大于F1F2)的點(diǎn)的軌跡稱為橢圓.這兩個(gè)定點(diǎn)稱為橢圓的焦點(diǎn),兩焦點(diǎn)的距離稱為橢圓的焦距.12、橢圓的幾何性質(zhì):

焦點(diǎn)在y軸上焦點(diǎn)的位置焦點(diǎn)在x軸上

圖形

標(biāo)準(zhǔn)方程范圍頂點(diǎn)軸長(zhǎng)

焦點(diǎn)焦距對(duì)稱性離心率準(zhǔn)線方程

xa2

y22x22abaxa且byb

y221ab0

abbxb且aya

x221ab0

1a,0、2a,010,b、20,b

10,a、20,a1b,0、2b,0

短軸的長(zhǎng)2b長(zhǎng)軸的長(zhǎng)2a

F1c,0、F2c,0F10,c、F20,c

F1F22ccab222

關(guān)于x軸、y軸、原點(diǎn)對(duì)稱

eca1ba220e1

ya2c

c

13、設(shè)是橢圓上任一點(diǎn),點(diǎn)到F1對(duì)應(yīng)準(zhǔn)線的距離為d1,點(diǎn)到F2對(duì)應(yīng)準(zhǔn)線的距離為d2,則

F1d1F2d2e.

14、平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離之差的絕對(duì)值等于常數(shù)(小于F1F2)的點(diǎn)的軌跡稱為雙曲線.這兩個(gè)定點(diǎn)稱為雙曲線的焦點(diǎn),兩焦點(diǎn)的距離稱為雙

曲線的焦距.

2--高二數(shù)學(xué)(上)期末復(fù)習(xí)部分知識(shí)點(diǎn)概要201*-1-5

15、雙曲線的幾何性質(zhì):焦點(diǎn)的位置焦點(diǎn)在x軸上

焦點(diǎn)在y軸上

圖形

標(biāo)準(zhǔn)方程范圍

頂點(diǎn)軸長(zhǎng)焦點(diǎn)焦距對(duì)稱性離心率準(zhǔn)線方程漸近線方程

xy

y22x22abxa或xa,yR

y221a0,b0

abya或ya,xR

x221a0,b0

1a,0、2a,010,a、20,a

虛軸的長(zhǎng)2b實(shí)軸的長(zhǎng)2a

F1c,0、F2c,0F10,c、F20,c

F1F22ccab222

關(guān)于x軸、y軸對(duì)稱,關(guān)于原點(diǎn)中心對(duì)稱

eca1ba22e1

yya2cba

xa2

cab

x

16、實(shí)軸和虛軸等長(zhǎng)的雙曲線稱為等軸雙曲線.

17、設(shè)是雙曲線上任一點(diǎn),點(diǎn)到F1對(duì)應(yīng)準(zhǔn)線的距離為d1,點(diǎn)到F2對(duì)應(yīng)準(zhǔn)線的距離為d2,則

F1d1F2d2e.

18、平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的軌跡稱為拋物線.定點(diǎn)F稱為拋物線的焦點(diǎn),定直線l稱為拋物線的準(zhǔn)線.

19、過(guò)拋物線的焦點(diǎn)作垂直于對(duì)稱軸且交拋物線于、兩點(diǎn)的線段,稱為

拋物線的“通徑”,即2p.20、焦半徑公式:

若點(diǎn)x0,y0在拋物線y22pxp0上,焦點(diǎn)為F,則Fx0p2;

p2若點(diǎn)x0,y0在拋物線y22pxp0上,焦點(diǎn)為F,則Fx0若點(diǎn)x0,y0在拋物線x22pyp0上,焦點(diǎn)為F,則Fy0p2;

p2若點(diǎn)x0,y0在拋物線x22pyp0上,焦點(diǎn)為F,則Fy0

3--4

.高二數(shù)學(xué)(上)期末復(fù)習(xí)部分知識(shí)點(diǎn)概要201*-1-5

21、拋物線的幾何性質(zhì):

標(biāo)準(zhǔn)方程

圖形

頂點(diǎn)對(duì)稱軸焦點(diǎn)準(zhǔn)線方程離心率范圍

y22px

y22px

x22py

x22py

p0p0p0p0

0,0

x軸

y軸

Fp,0Fp22,0

Fp0,F0,p22

xp2

xp2

yp2

yp2

e1x0x0y0y0

4--

擴(kuò)展閱讀:高二數(shù)學(xué)選修2-1知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)(上)期末復(fù)習(xí)部分知識(shí)點(diǎn)概要201*-1-5高二數(shù)學(xué)選修2-1知識(shí)點(diǎn)

1、命題:用語(yǔ)言、符號(hào)或式子表達(dá)的,可以判斷真假的陳述句.真命題:判斷為真的語(yǔ)句.假命題:判斷為假的語(yǔ)句.2、“若p,則q”形式的命題中的p稱為命題的條件,q稱為命題的結(jié)論.

3、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論和條件,則這兩個(gè)命題稱為互逆命題.其中一個(gè)命題稱為原命題,另一個(gè)稱為原命題的逆命題.若原命題為“若p,則q”,它的逆命題為“若q,則p”.

4、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的條件的否定和結(jié)論的否定,則這兩個(gè)命題稱為互否命題.中一個(gè)命題稱為原命題,另一個(gè)稱為原命題的否命題.若原命題為“若p,則q”,則它的否命題為“若p,則q”.

5、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的結(jié)論的否定和條件的否定,則這兩個(gè)命題稱為互為逆否命題.其中一個(gè)命題稱為原命題,另一個(gè)稱為原命題的逆否命題.

若原命題為“若p,則q”,則它的否命題為“若q,則p”.6、四種命題的真假性:

原命題逆命題否命題逆否命題真真真真真假假真假真真真假假假假

四種命題的真假性之間的關(guān)系:

1兩個(gè)命題互為逆否命題,它們有相同的真假性;

2兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.

7、若pq,則p是q的充分條件,q是p的必要條件.若pq,則p是q的充要條件(充分必要條件).

8、用聯(lián)結(jié)詞“且”把命題p和命題q聯(lián)結(jié)起來(lái),得到一個(gè)新命題,記作pq.

當(dāng)p、q都是真命題時(shí),pq是真命題;當(dāng)p、q兩個(gè)命題中有一個(gè)命題是假命題時(shí),pq是假命題.

用聯(lián)結(jié)詞“或”把命題p和命題q聯(lián)結(jié)起來(lái),得到一個(gè)新命題,記作pq.

當(dāng)p、q兩個(gè)命題中有一個(gè)命題是真命題時(shí),pq是真命題;當(dāng)p、q兩個(gè)命題都是假命題時(shí),pq是假命題.

對(duì)一個(gè)命題p全盤否定,得到一個(gè)新命題,記作p.

若p是真命題,則p必是假命題;若p是假命題,則p必是真命題.

9、短語(yǔ)“對(duì)所有的”、“對(duì)任意一個(gè)”在邏輯中通常稱為全稱量詞,用“”表示.含有全稱量詞的命題稱為全稱命題.

全稱命題“對(duì)中任意一個(gè)x,有px成立”,記作“x,px”.短語(yǔ)“存在一個(gè)”、“至少有一個(gè)”在邏輯中通常稱為存在量詞,用“”表示.含有存在量詞的命題稱為特稱命題.

特稱命題“存在中的一個(gè)x,使px成立”,記作“x,px”.

10、全稱命題p:x,px,它的否定p:x,px.全稱命題的否定是特稱命題.11、平面內(nèi)與兩個(gè)定點(diǎn)F(大于F的點(diǎn)的軌跡稱為橢圓.這F2的距離之和等于常數(shù)1,1F2)兩個(gè)定點(diǎn)稱為橢圓的焦點(diǎn),兩焦點(diǎn)的距離稱為橢圓的焦距.12、橢圓的幾何性質(zhì):

1--高二數(shù)學(xué)(上)期末復(fù)習(xí)部分知識(shí)點(diǎn)概要201*-1-5焦點(diǎn)的位置

焦點(diǎn)在x軸上

焦點(diǎn)在y軸上

圖形

標(biāo)準(zhǔn)方程范圍頂點(diǎn)軸長(zhǎng)焦點(diǎn)焦距對(duì)稱性離心率準(zhǔn)線方程

xy1ab0a2b2axa且byb

22yx1ab0a2b2bxb且aya

22

1a,0、2a,010,b、20,bF1c,0、F2c,0

10,a、20,a1b,0、2b,0F10,c、F20,c

短軸的長(zhǎng)2b長(zhǎng)軸的長(zhǎng)2a

F1F22cc2a2b2

關(guān)于x軸、y軸、原點(diǎn)對(duì)稱

cb2e120e1

aaa2x

ca2y

c13、設(shè)是橢圓上任一點(diǎn),點(diǎn)到F1對(duì)應(yīng)準(zhǔn)線的距離為d1,點(diǎn)到F2對(duì)應(yīng)準(zhǔn)線的距離為d2,則

F1d1F2d2e.

14、平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離之差的絕對(duì)值等于常數(shù)(小于F1F2)的點(diǎn)的軌跡稱為雙曲線.這兩個(gè)定點(diǎn)稱為雙曲線的焦點(diǎn),兩焦點(diǎn)的距離稱為雙曲線的焦距.15、雙曲線的幾何性質(zhì):

焦點(diǎn)在y軸上焦點(diǎn)的位置焦點(diǎn)在x軸上

圖形

標(biāo)準(zhǔn)方程范圍頂點(diǎn)軸長(zhǎng)焦點(diǎn)

xy1a0,b022abxa或xa,yR

22yx1a0,b022abya或ya,xR

22

1a,0、2a,0F1c,0、F2c,0

10,a、20,aF10,c、F20,c

虛軸的長(zhǎng)2b實(shí)軸的長(zhǎng)2a

2--高二數(shù)學(xué)(上)期末復(fù)習(xí)部分知識(shí)點(diǎn)概要201*-1-5焦距對(duì)稱性離心率準(zhǔn)線方程漸近線方程

F1F22cc2a2b2

關(guān)于x軸、y軸對(duì)稱,關(guān)于原點(diǎn)中心對(duì)稱

cb2e12e1

aaa2x

cbyx

aa2y

cayx

b16、實(shí)軸和虛軸等長(zhǎng)的雙曲線稱為等軸雙曲線.

17、設(shè)是雙曲線上任一點(diǎn),點(diǎn)到F1對(duì)應(yīng)準(zhǔn)線的距離為d1,點(diǎn)到F2對(duì)應(yīng)準(zhǔn)線的距離為d2,則

F1d1F2d2e.

18、平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的軌跡稱為拋物線.定點(diǎn)F稱為拋物線的焦點(diǎn),定直線l稱為拋物線的準(zhǔn)線.

19、過(guò)拋物線的焦點(diǎn)作垂直于對(duì)稱軸且交拋物線于、兩點(diǎn)的線段,稱為拋物線的

“通徑”,即2p.20、焦半徑公式:

p;2p2若點(diǎn)x0,y0在拋物線y2pxp0上,焦點(diǎn)為F,則Fx0;

2p2若點(diǎn)x0,y0在拋物線x2pyp0上,焦點(diǎn)為F,則Fy0;

2p2若點(diǎn)x0,y0在拋物線x2pyp0上,焦點(diǎn)為F,則Fy0.

2若點(diǎn)x0,y0在拋物線y22pxp0上,焦點(diǎn)為F,則Fx0

21、拋物線的幾何性質(zhì):標(biāo)準(zhǔn)方程

y22pxy22pxx22pyx22py

p0p0p0p0

圖形頂點(diǎn)對(duì)稱軸焦點(diǎn)準(zhǔn)線方程

0,0

x軸

pF,02xp2y軸

pF,02xp2pF0,

2yp2pF0,

2yp23--高二數(shù)學(xué)(上)期末復(fù)習(xí)部分知識(shí)點(diǎn)概要201*-1-5離心率范圍

e1x0x0y0y0

4--

友情提示:本文中關(guān)于《高二數(shù)學(xué)選修2-1知識(shí)點(diǎn)總結(jié)》給出的范例僅供您參考拓展思維使用,高二數(shù)學(xué)選修2-1知識(shí)點(diǎn)總結(jié):該篇文章建議您自主創(chuàng)作。

來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問(wèn)題,請(qǐng)聯(lián)系我們及時(shí)刪除。


高二數(shù)學(xué)選修2-1知識(shí)點(diǎn)總結(jié)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請(qǐng)保留原作者信息,謝謝!
鏈接地址:http://www.weilaioem.com/gongwen/626846.html