久久久久综合给合狠狠狠,人人干人人模,大陆一级黄色毛片免费在线观看,亚洲人人视频,欧美在线观看一区二区,国产成人啪精品午夜在线观看,午夜免费体验

薈聚奇文、博采眾長(zhǎng)、見賢思齊
當(dāng)前位置:公文素材庫(kù) > 計(jì)劃總結(jié) > 工作總結(jié) > 高中數(shù)學(xué)必修3知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)必修3知識(shí)點(diǎn)總結(jié)

網(wǎng)站:公文素材庫(kù) | 時(shí)間:2019-05-28 15:00:24 | 移動(dòng)端:高中數(shù)學(xué)必修3知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)必修3知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)必修3知識(shí)點(diǎn)

第一章算法初步

1.1.1

算法的概念

1、算法概念:2.算法的特點(diǎn):(1)有限性;(2)確定性;(3)順序性與正確性;(4)不唯一性;(5)普遍性;1.1.2

程序框圖

(一)構(gòu)成程序框的圖形符號(hào)及其作用

(二)、算法的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。1、順序結(jié)構(gòu):如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所指定的操作。2、條件結(jié)構(gòu):

條件結(jié)構(gòu)是依據(jù)指定條件選擇執(zhí)行不同指令的控制結(jié)構(gòu)。依據(jù)條件P是否成立而選擇執(zhí)行A框或B框。無論P(yáng)條件是否成立,只能執(zhí)行A框或B框之一,不可能同時(shí)執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個(gè)判斷結(jié)構(gòu)可以有多個(gè)判斷框。

3、循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會(huì)出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。1.2.1

輸入、輸出語句和賦值語句

AB1、輸入語句一般格式

Input“提示內(nèi)容”;變量Print“提示內(nèi)容”;表達(dá)式2、輸出語句:一般格式3、賦值語句(1)賦值語句的一般格式變量=表達(dá)式(2)賦值語句的作用是將表達(dá)式所代表的值賦給變量;(3)賦值語句中的“=”稱作賦值號(hào),與數(shù)學(xué)中的等號(hào)的意義是不同的。賦值號(hào)的左右兩邊不能對(duì)換,它將賦值號(hào)右邊的表達(dá)式的值賦給賦值號(hào)左邊的變量;(4)賦值語句左邊只能是變量名字,而不是表達(dá)式,右邊表達(dá)式可以是一個(gè)數(shù)據(jù)、常量或算式;(5)對(duì)于一個(gè)變量可以多次賦值。1.2.2條件語句

1、條件語句的一般格式:IF語句的一般格式為圖1,對(duì)應(yīng)的程序框圖為圖2。

if表達(dá)式語句序列1;else語句序列2;圖1圖2

1

否滿足條件?是語句1語句2

end必修三IF語句的最簡(jiǎn)單格式為圖3,對(duì)應(yīng)的程序框圖為圖4。

1.2.3循環(huán)語句

循環(huán)結(jié)構(gòu)是由循環(huán)語句來實(shí)現(xiàn)的。一般程序設(shè)計(jì)語言中有兩種語句結(jié)構(gòu)。即for語句和while語句。1、當(dāng)型循環(huán)while語句

(1)while語句的一般格式是對(duì)應(yīng)的程序框圖是while條件

循環(huán)體滿足條件?wend

(2)2、直到型循環(huán)untile語句

for語句的一般格式是對(duì)應(yīng)的程序框圖是

if條件then語句序列1else語句序列2end(圖4)否(圖3)

滿足條件?是語句循環(huán)體是循環(huán)體do循環(huán)體;Loopuntil條件滿足條件?是否

1.3.1輾轉(zhuǎn)相除法與更相減損術(shù)

1、輾轉(zhuǎn)相除法。用較大的數(shù)除以較小的數(shù)所得的余數(shù)和較小的數(shù)構(gòu)成新的一對(duì)數(shù),繼續(xù)做上面的除法,直到大數(shù)被小數(shù)除盡,這個(gè)較小的數(shù)就是最大公約數(shù)。

2、更相減損術(shù)。以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)(等數(shù))就是所求的最大公約數(shù)。1.3.2秦九韶算法與排序

1、秦九韶算法概念:f(x)=anxn+an-1xn-1+….+a1x+a0求值問題

f(x)=anxn+an-1xn-1+….+a1x+a0=(anxn-1+an-1xn-2+….+a1)x+a0=((anxn-2+an-1xn-3+….+a2)x+a1)x+a0

=......=(...(anx+an-1)x+an-2)x+...+a1)x+a0

求多項(xiàng)式的值時(shí),首先計(jì)算最內(nèi)層括號(hào)內(nèi)依次多項(xiàng)式的值,即v1=anx+an-1

然后由內(nèi)向外逐層計(jì)算一次多項(xiàng)式的值,即v2=v1x+an-2v3=v2x+an-3......vn=vn-1x+a0這樣,把n次多項(xiàng)式的求值問題轉(zhuǎn)化成求n個(gè)一次多項(xiàng)式的值的問題。

必修三

1.3.3進(jìn)位制

(1)以k為基數(shù)的k進(jìn)制換算為十進(jìn)制:anan1a1a0(k)ankan1k(2)十進(jìn)制換算為k進(jìn)制:除以k取余,倒序排列

nn1a1kn1a0k

0第二章統(tǒng)計(jì)

2.1.1簡(jiǎn)單隨機(jī)抽樣

1.總體和樣本,個(gè)體,樣本容量

2.簡(jiǎn)單隨機(jī)抽樣:從元素個(gè)數(shù)為N的總體中不放回地抽取容量為n樣本,如果每一次抽取時(shí)總體中的各個(gè)個(gè)體有相同的的可能性被抽到。

3.簡(jiǎn)單隨機(jī)抽樣常用的方法:(1)抽簽法;⑵隨機(jī)數(shù)表法;2.1.2系統(tǒng)抽樣

1.系統(tǒng)抽樣(等距抽樣或機(jī)械抽樣):當(dāng)總體元素個(gè)數(shù)很大時(shí),可將總體分成均衡的若干部分,然后按照預(yù)先制定的規(guī)則,從每一部分抽取一個(gè)個(gè)體,得到所需要的樣本。2.1.3分層抽樣

1.分層抽樣:當(dāng)總體由明顯差異的幾部分組成時(shí),將總體中各個(gè)個(gè)體按某種特征分層,在各層中按層在總體中所占比例進(jìn)行簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣。三種抽樣方法的區(qū)別和聯(lián)系:

類別簡(jiǎn)單隨機(jī)抽樣共同點(diǎn)各自特點(diǎn)從總體中逐個(gè)抽取將總體分成均衡的在起始部分抽樣幾部分,按事先制系統(tǒng)抽樣抽樣過程中每個(gè)個(gè)定的規(guī)則在各部分體被抽到的機(jī)會(huì)相抽取等將總體按某種特征分層抽樣分成幾層,分層進(jìn)行抽取2.2.1用樣本的頻率分布估計(jì)總體的分布1、列頻率分布表,畫頻率分布直方圖:

(1)計(jì)算極差(2)決定組數(shù)和組距(3)決定分點(diǎn)(4)列頻率分布表(5)畫頻率分布直方圖2、莖葉圖

2.2.2用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征1、平均值:xx1x2xnn相互聯(lián)系最基本的抽樣方法適用范圍總體容量較小時(shí)時(shí),采用簡(jiǎn)單隨機(jī)抽樣各層抽樣時(shí)可采用總體容量較大時(shí)總體由差異明顯的簡(jiǎn)單隨機(jī)抽樣或系幾部分組成時(shí)統(tǒng)抽樣

必修三2、.樣本標(biāo)準(zhǔn)差:ss2(x1x)(x2x)(xnx)n222

3、(1)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)共同的常數(shù),標(biāo)準(zhǔn)差不變(2)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)乘以一個(gè)共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉淼膋倍2.3.2兩個(gè)變量的線性相關(guān)

n1、概念:(1)回歸直線方程:yabx(2)回歸系數(shù):bi1xiyinxyni1xinx22,aybx

2.應(yīng)用直線回歸的注意事項(xiàng):回歸分析前,最好先作出散點(diǎn)圖;

第三章概率

3.1.13.1.2隨機(jī)事件的概率及概率的意義1、基本概念:

(1)必然事件(2)不可能事件(3)確定事件(4)隨機(jī)事件

(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出

nA現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=n為事件A出現(xiàn)的頻率:對(duì)于給定的隨機(jī)事件A,在n次重復(fù)進(jìn)行的實(shí)驗(yàn)中,時(shí)間A發(fā)生的頻率,當(dāng)n很大時(shí),總是在某個(gè)常數(shù)附近擺動(dòng),隨著n的增加,擺動(dòng)幅度越來越小,這時(shí)就把這個(gè)常數(shù)叫做事件A的概率

nA(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值n,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率3.1.3概率的基本性質(zhì)1、基本概念:

(2)若A∩B為不可能事件,即A∩B=ф,即不可能同時(shí)發(fā)生的兩個(gè)事件,那么稱事件A與事件B互斥;(3)若A∩B為不可能事件,A∪B為必然事件,即不能同時(shí)發(fā)生且必有一個(gè)發(fā)生的兩個(gè)事件,那么稱事

件A與事件B互為對(duì)立事件;

概率加法公式:當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1P(B)2、概率的基本性質(zhì):

1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);

必修三

3)若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1P(B);

4)互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時(shí)不發(fā)生,而對(duì)立事件是指事件A

與事件B有且僅有一個(gè)發(fā)生,其包括兩種情

形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形。3.2.13.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生

1、(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。(2)古典概型的解題步驟;

①求出總的基本事件數(shù);②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=3.3.13.3.2幾何概型基本概念:

(1)幾何概率模型:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;(2)幾何概型的概率公式:P(A)=

構(gòu)成事件A的區(qū)域長(zhǎng)度(面積或體積)積)A包含的基本事件數(shù)總的基本事件個(gè)數(shù)

試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域長(zhǎng)度(面積或體;

(3)幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等.

必修三

擴(kuò)展閱讀:高中數(shù)學(xué)必修3知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)必修3知識(shí)點(diǎn)

第一章算法初步

1.1.1

算法的概念

1、算法概念:

在數(shù)學(xué)上,現(xiàn)代意義上的“算法”通常是指可以用計(jì)算機(jī)來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.2.算法的特點(diǎn):

(1)有限性:一個(gè)算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.(2)確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.

(3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個(gè)步驟只能有一個(gè)確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無誤,才能完成問題.

(4)不唯一性:求解某一個(gè)問題的解法不一定是唯一的,對(duì)于一個(gè)問題可以有不同的算法.(5)普遍性:很多具體的問題,都可以設(shè)計(jì)合理的算法去解決,如心算、計(jì)算器計(jì)算都要經(jīng)過有限、事先設(shè)計(jì)好的步驟加以解決.1.1.2

程序框圖

1、程序框圖基本概念:

(一)程序構(gòu)圖的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形。

一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明。

(二)構(gòu)成程序框的圖形符號(hào)及其作用

程序框起止框輸入、輸出框處理框法中任何需要輸入、輸出的位置。賦值、計(jì)算,算法中處理數(shù)據(jù)需要的算式、公式等分別寫在不同的用以處理數(shù)據(jù)的處理框內(nèi)。判斷某一條件是否成立,成立時(shí)在出口處標(biāo)判斷框明“是”或“Y”;不成立時(shí)標(biāo)明“否”或“N”。不可少的。表示一個(gè)算法輸入和輸出的信息,可用在算名稱功能表示一個(gè)算法的起始和結(jié)束,是任何流程圖學(xué)習(xí)這部分知識(shí)的時(shí)候,要掌握各個(gè)圖形的形狀、作用及使用規(guī)則,畫程序框圖的規(guī)則如下:1、使用標(biāo)準(zhǔn)的圖形符號(hào)。2、框圖一般按從上到下、從左到右的方向畫。3、除判斷框外,大多數(shù)流程圖符號(hào)只有一個(gè)進(jìn)入點(diǎn)和一個(gè)退出點(diǎn)。判斷框具有超過一個(gè)退出點(diǎn)的唯一符號(hào)。4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個(gè)結(jié)果;另一類是多分支判斷,有幾種不同的結(jié)果。5、在圖形符號(hào)內(nèi)描述的語言要非常簡(jiǎn)練清楚。(三)、算法的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。

1、順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡(jiǎn)單的算法結(jié)構(gòu),語句與語句之間,框與框之間是按從上到下的順序進(jìn)行的,它是由若干個(gè)依次執(zhí)行的處理步驟組成的,它是任何一個(gè)算法都離不開的一種基本算法結(jié)構(gòu)。

順序結(jié)構(gòu)在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所指定的操作。2、條件結(jié)構(gòu):

AB條件結(jié)構(gòu)是指在算法中通過對(duì)條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結(jié)構(gòu)。

條件P是否成立而選擇執(zhí)行A框或B框。無論P(yáng)條件是否成立,只能執(zhí)行A框或B框之一,不可能同時(shí)執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個(gè)判斷結(jié)構(gòu)可以有多個(gè)判斷框。

3、循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會(huì)出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。循環(huán)結(jié)構(gòu)又稱重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:

(1)、一類是當(dāng)型循環(huán)結(jié)構(gòu),如下左圖所示,它的功能是當(dāng)給定的條件P成立時(shí),執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行A框,直到某一次條件P不成立為止,此時(shí)不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。

(2)、另一類是直到型循環(huán)結(jié)構(gòu),如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時(shí)不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。

AAPP成立成立不成立不成立p

當(dāng)型循環(huán)結(jié)構(gòu)直到型循環(huán)結(jié)構(gòu)

注意:1循環(huán)結(jié)構(gòu)要在某個(gè)條件下終止循環(huán),這就需要條件結(jié)構(gòu)來判斷。因此,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu),但不允許“死循環(huán)”。2在循環(huán)結(jié)構(gòu)中都有一個(gè)計(jì)數(shù)變量和累加變量。計(jì)數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)果。計(jì)數(shù)變量和累加變量一般是同步......執(zhí)行的,累加一次,計(jì)數(shù)一次。1.2.1

輸入、輸出語句和賦值語句1、輸入語句

(1)輸入語句的一般格式

圖形計(jì)算器格式INPUT“提示內(nèi)容”;變量INPUT“提示內(nèi)容”,變量(2)輸入語句的作用是實(shí)現(xiàn)算法的輸入信息功能;(3)“提示內(nèi)容”提示用戶輸入什么樣的信息,變量是指程序在運(yùn)行時(shí)其值是可以變化的量;(4)輸入語句要求輸入的值只能是具體的常數(shù),不能是函數(shù)、變量或表達(dá)式;(5)提示內(nèi)容與變量之間用分號(hào)“;”隔開,若輸入多個(gè)變量,變量與變量之間用逗號(hào)“,”隔開。2、輸出語句

(1)輸出語句的一般格式

圖形計(jì)算器格式PRINT“提示內(nèi)容”;表達(dá)式Disp“提示內(nèi)容”,變量(2)輸出語句的作用是實(shí)現(xiàn)算法的輸出結(jié)果功能;(3)“提示內(nèi)容”提示用戶輸入什么樣的信息,表達(dá)式是指程序要輸出的數(shù)據(jù);(4)輸出語句可以輸出常量、變量或表達(dá)式的值以及字符。3、賦值語句

(1)賦值語句的一般格式

(2)賦值語句的作用是將表達(dá)式所代表的值賦給變量;(3)賦值語句中的“=”稱作賦值號(hào),與數(shù)學(xué)中的等號(hào)的意義是不同的。賦值號(hào)的左右兩邊不能對(duì)換,它將賦值號(hào)右邊的表達(dá)式的值賦給賦值號(hào)左邊的變量;(4)賦值語句左邊只能是變量名字,而不是表達(dá)式,右邊表達(dá)式可以是一個(gè)數(shù)據(jù)、常量或算式;(5)對(duì)于一個(gè)變量可以多次賦值。

注意:①賦值號(hào)左邊只能是變量名字,而不能是表達(dá)式。如:2=X是錯(cuò)誤的。②賦值號(hào)左

右不能對(duì)換。如“A=B”“B=A”的含義運(yùn)行結(jié)果是不同的。③不能利用賦值語句進(jìn)行代數(shù)式的演算。(如化簡(jiǎn)、因式分解、解方程等)④賦值號(hào)“=”與數(shù)學(xué)中的等號(hào)意義不同。

1.2.2條件語句

1、條件語句的一般格式有兩種:(1)IFTHENELSE語句;(2)IFTHEN語句。2、IFTHENELSE語句

IFTHENELSE語句的一般格式為圖1,對(duì)應(yīng)的程序框圖為圖2。

圖形計(jì)算器變量=表達(dá)式格式表達(dá)式變量IF條件THEN語句1ELSE語句2ENDIF滿足條件?是語句1否語句

圖1圖2

分析:在IFTHENELSE語句中,“條件”表示判斷的條件,“語句1”表示滿足條件時(shí)執(zhí)行的操作內(nèi)容;“語句2”表示不滿足條件時(shí)執(zhí)行的操作內(nèi)容;ENDIF表示條件語句的結(jié)束。計(jì)算機(jī)在執(zhí)行時(shí),首先對(duì)IF后的條件進(jìn)行判斷,如果條件符合,則執(zhí)行THEN后面的語句1;若條件不符合,則執(zhí)行ELSE后面的語句2。3、IFTHEN語句

IFTHEN語句的一般格式為圖3,對(duì)應(yīng)的程序框圖為圖4。IF條件THEN語句ENDIF(圖3)

是滿足條件?否(圖4)執(zhí)行的操語句注意:“條件”表示判斷的條件;“語句”表示滿足條件時(shí)

作內(nèi)容,條件不滿足時(shí),結(jié)束程序;ENDIF表示條件語句的結(jié)束。計(jì)算機(jī)在執(zhí)行時(shí)首先對(duì)IF后的條件進(jìn)行判斷,如果條件符合就執(zhí)行THEN后邊的語句,若條件不符合則直接結(jié)束該條件語句,轉(zhuǎn)而執(zhí)行其它語句。

1.2.3循環(huán)語句

循環(huán)結(jié)構(gòu)是由循環(huán)語句來實(shí)現(xiàn)的。對(duì)應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)計(jì)語言中也有當(dāng)型(WHILE型)和直到型(UNTIL型)兩種語句結(jié)構(gòu)。即WHILE語句和UNTIL語句。

1、WHILE語句

(1)WHILE語句的一般格式是對(duì)應(yīng)的程序框圖是

循環(huán)體WHILE條件循環(huán)體WEND滿足條件?否是(2)當(dāng)計(jì)算機(jī)遇到WHILE語句時(shí),先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與WEND之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個(gè)過程反復(fù)進(jìn)行,直到某一次條件不符合為止。這時(shí),計(jì)算機(jī)將不執(zhí)行循環(huán)體,直接跳到WEND語句后,接著執(zhí)行WEND之后的語句。因此,當(dāng)型循環(huán)有時(shí)也稱為“前測(cè)試型”循環(huán)。2、UNTIL語句

(1)UNTIL語句的一般格式是對(duì)應(yīng)的程序框圖是

DO循環(huán)體LOOPUNTIL條件循環(huán)體滿足條件?是否(2)直到型循環(huán)又稱為“后測(cè)試型”循環(huán),從UNTIL型循環(huán)結(jié)構(gòu)分析,計(jì)算機(jī)執(zhí)行該語句時(shí),先執(zhí)行一次循環(huán)體,然后進(jìn)行條件的判斷,如果條件不滿足,繼續(xù)返回執(zhí)行循環(huán)體,然后再進(jìn)行條件的判斷,這個(gè)過程反復(fù)進(jìn)行,直到某一次條件滿足時(shí),不再執(zhí)行循環(huán)體,跳到LOOPUNTIL語句后執(zhí)行其他語句,是先執(zhí)行循環(huán)體后進(jìn)行條件判斷的循環(huán)語句。分析:當(dāng)型循環(huán)與直到型循環(huán)的區(qū)別:(先由學(xué)生討論再歸納)(1)當(dāng)型循環(huán)先判斷后執(zhí)行,直到型循環(huán)先執(zhí)行后判斷;

在WHILE語句中,是當(dāng)條件滿足時(shí)執(zhí)行循環(huán)體,在UNTIL語句中,是當(dāng)條件不滿足時(shí)執(zhí)行循環(huán)

1.3.1輾轉(zhuǎn)相除法與更相減損術(shù)

1、輾轉(zhuǎn)相除法。也叫歐幾里德算法,用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:(1):用較大的數(shù)m除以較小的數(shù)n得到一個(gè)商為m,n的最大公約數(shù);若(3):若商

S2R1R0S0和一個(gè)余數(shù)

R0R0;(2):若

S1R0=0,則n

R1≠0,則用除數(shù)n除以余數(shù)

R1得到一個(gè)商

R0和一個(gè)余數(shù)

R1;

=0,則

R2R1為m,n的最大公約數(shù);若≠0,則用除數(shù)除以余數(shù)

Rn1得到一個(gè)

和一個(gè)余數(shù);依次計(jì)算直至

Rn=0,此時(shí)所得到的即為所求的最

大公約數(shù)。2、更相減損術(shù)

我國(guó)早期也有求最大公約數(shù)問題的算法,就是更相減損術(shù)。在《九章算術(shù)》中有更相減損術(shù)求最大公約數(shù)的步驟:可半者半之,不可半者,副置分母子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之。

翻譯為:(1):任意給出兩個(gè)正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡(jiǎn);若不是,執(zhí)行第二步。(2):以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)(等數(shù))就是所求的最大公約數(shù)。例2用更相減損術(shù)求98與63的最大公約數(shù).分析:(略)

3、輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別:

(1)都是求最大公約數(shù)的方法,計(jì)算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)以減法為主,計(jì)算次數(shù)上輾轉(zhuǎn)相除法計(jì)算次數(shù)相對(duì)較少,特別當(dāng)兩個(gè)數(shù)字大小區(qū)別較大時(shí)計(jì)算次數(shù)的區(qū)別較明顯。

(2)從結(jié)果體現(xiàn)形式來看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)

則以減數(shù)與差相等而得到

1.3.2秦九韶算法與排序1、秦九韶算法概念:

f(x)=anxn+an-1xn-1+….+a1x+a0求值問題

f(x)=anxn+an-1xn-1+….+a1x+a0=(anxn-1+an-1xn-2+….+a1)x+a0=((anxn-2+an-1xn-3+….+a2)x+a1)x+a0

=......=(...(anx+an-1)x+an-2)x+...+a1)x+a0

求多項(xiàng)式的值時(shí),首先計(jì)算最內(nèi)層括號(hào)內(nèi)依次多項(xiàng)式的值,即v1=anx+an-1然后由內(nèi)向外逐層計(jì)算一次多項(xiàng)式的值,即

v2=v1x+an-2v3=v2x+an-3......vn=vn-1x+a0、

這樣,把n次多項(xiàng)式的求值問題轉(zhuǎn)化成求n個(gè)一次多項(xiàng)式的值的問題。2、兩種排序方法:直接插入排序和冒泡排序1、直接插入排序

基本思想:插入排序的思想就是讀一個(gè),排一個(gè)。將第1個(gè)數(shù)放入數(shù)組的第1個(gè)元素中,以后讀入的數(shù)與已存入數(shù)組的數(shù)進(jìn)行比較,確定它在從大到小的排列中應(yīng)處的位置.將該位置以及以后的元素向后推移一個(gè)位置,將讀入的新數(shù)填入空出的位置中.(由于算法簡(jiǎn)單,可以舉例說明)2、冒泡排序

基本思想:依次比較相鄰的兩個(gè)數(shù),把大的放前面,小的放后面.即首先比較第1個(gè)數(shù)和第2個(gè)數(shù),大數(shù)放前,小數(shù)放后.然后比較第2個(gè)數(shù)和第3個(gè)數(shù)......直到比較最后兩個(gè)數(shù).第一趟結(jié)束,最小的一定沉到最后.重復(fù)上過程,仍從第1個(gè)數(shù)開始,到最后第2個(gè)數(shù)......由于在排序過程中總是大數(shù)往前,小數(shù)往后,相當(dāng)氣泡上升,所以叫冒泡排序.

1.3.3進(jìn)位制1、概念:進(jìn)位制是一種記數(shù)方式,用有限的數(shù)字在不同的位置表示不同的數(shù)值。可使用數(shù)字符號(hào)的個(gè)數(shù)稱為基數(shù),基數(shù)為n,即可稱n進(jìn)位制,簡(jiǎn)稱n進(jìn)制,F(xiàn)在最常用的是十進(jìn)制,通常使用10個(gè)阿拉伯?dāng)?shù)字0-9進(jìn)行記數(shù)。對(duì)于任何一個(gè)數(shù),我們可以用不同的進(jìn)位制來表示。比如:十進(jìn)數(shù)57,可以用二進(jìn)制表示為111001,也可以用八進(jìn)制表示為71、用十六進(jìn)制表示為39,它們所代表的數(shù)值都是一樣的。

一般地,若k是一個(gè)大于一的整數(shù),那么以k為基數(shù)的k進(jìn)制可以表示為:

anan1...a1a0(k)(0ank,0an1,...,a1,a0k),

而表示各種進(jìn)位制數(shù)一般在數(shù)字右下腳加注來表示,如111001(2)表示二進(jìn)制數(shù),34(5)表示5進(jìn)制數(shù)

第二章統(tǒng)計(jì)

2.1.1簡(jiǎn)單隨機(jī)抽樣

1.總體和樣本

總體:在統(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體.個(gè)體:把每個(gè)研究對(duì)象叫做個(gè)體.

總體容量:把總體中個(gè)體的總數(shù)叫做總體容量.

為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:研究,我們稱它為樣本.其中個(gè)體的個(gè)數(shù)稱為樣本容量。......

2.簡(jiǎn)單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。3.簡(jiǎn)單隨機(jī)抽樣常用的方法:

(1)抽簽法;⑵隨機(jī)數(shù)表法;⑶計(jì)算機(jī)模擬法;⑷使用統(tǒng)計(jì)軟件直接抽取。

在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。

4.抽簽法:

(1)給調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);(2)準(zhǔn)備抽簽的工具,實(shí)施抽簽

,,,

(3)對(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查

例:請(qǐng)調(diào)查你所在的學(xué)校的學(xué)生做喜歡的體育活動(dòng)情況。5.隨機(jī)數(shù)表法:

例:利用隨機(jī)數(shù)表在所在的班級(jí)中抽取10位同學(xué)參加某項(xiàng)活動(dòng)。

2.1.2系統(tǒng)抽樣

1.系統(tǒng)抽樣(等距抽樣或機(jī)械抽樣):

把總體的單位進(jìn)行排序,再計(jì)算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個(gè)樣本采用簡(jiǎn)單隨機(jī)抽樣的辦法抽取。

K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)

前提條件:總體中個(gè)體的排列對(duì)于研究的變量來說,應(yīng)是隨機(jī)的,即不存在某種與研究變量相關(guān)的規(guī)則分布。可以在調(diào)查允許的條件下,從不同的樣本開始抽樣,對(duì)比幾次樣本的特點(diǎn)。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。

2.系統(tǒng)抽樣,即等距抽樣是實(shí)際中最為常用的抽樣方法之一。因?yàn)樗鼘?duì)抽樣框的要求較低,實(shí)施也比較簡(jiǎn)單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊(duì)的話,使用系統(tǒng)抽樣可以大大提高估計(jì)精度。

2.1.3分層抽樣

1.分層抽樣(類型抽樣):

先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟危缓笤僭诟鱾(gè)類型或?qū)哟沃胁捎煤?jiǎn)單隨機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。

兩種方法:

1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。

2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。

分層標(biāo)準(zhǔn):","2.3.2兩個(gè)變量的線性相關(guān)1、概念:

","p":{"h":16.947,"w":3.937,"x":166.717,"y":200.4,"z":11},"ps":null,"nAfn(A)=n為事件A出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。

(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n

nA的比值n,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率

3.1.3概率的基本性質(zhì)

1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;

(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對(duì)立事件;(4)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對(duì)立

事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1P(B)

2、概率的基本性質(zhì):

1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);

3)若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1P(B);

4)互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時(shí)不發(fā)生,而對(duì)立事件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形。3.2.13.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生

1、(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。(2)古典概型的解題步驟;①求出總的基本事件數(shù);

A包含的基本事件數(shù)②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=總的基本事件個(gè)數(shù)

3.3.13.3.2幾何概型及均勻隨機(jī)數(shù)的產(chǎn)生

1、基本概念:

(1)幾何概率模型:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;(2)幾何概型的概率公式:

構(gòu)成事件A的區(qū)域長(zhǎng)度(面積或體積)積);

P(A)=試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域長(zhǎng)度(面積或體(3)幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等.

友情提示:本文中關(guān)于《高中數(shù)學(xué)必修3知識(shí)點(diǎn)總結(jié)》給出的范例僅供您參考拓展思維使用,高中數(shù)學(xué)必修3知識(shí)點(diǎn)總結(jié):該篇文章建議您自主創(chuàng)作。

來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請(qǐng)聯(lián)系我們及時(shí)刪除。


高中數(shù)學(xué)必修3知識(shí)點(diǎn)總結(jié)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請(qǐng)保留原作者信息,謝謝!
鏈接地址:http://www.weilaioem.com/gongwen/588046.html