久久久久综合给合狠狠狠,人人干人人模,大陆一级黄色毛片免费在线观看,亚洲人人视频,欧美在线观看一区二区,国产成人啪精品午夜在线观看,午夜免费体验

薈聚奇文、博采眾長、見賢思齊
當前位置:公文素材庫 > 計劃總結 > 工作總結 > 高一數(shù)學必修一第二章知識總結

高一數(shù)學必修一第二章知識總結

網(wǎng)站:公文素材庫 | 時間:2019-05-26 20:29:35 | 移動端:高一數(shù)學必修一第二章知識總結

高一數(shù)學必修一第二章知識總結

高一數(shù)學必修一第二章知識總結

一、指數(shù)函數(shù)

(一)指數(shù)與指數(shù)冪的運算

1.根式的概念:一般地,如果xna,那么x叫做a的n次方根,其中n>1,且n∈N*.

負數(shù)沒有偶次方根;0的任何次方根都是0,記作n00。當n是奇數(shù)時,anna,當n是偶數(shù)時,ann(a0)a|a|a(a0)2.分數(shù)指數(shù)冪

正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:

maanmnna(a0,m,nN,n1)1mnm*,

*1na0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義3.實數(shù)指數(shù)冪的運算性質

am(a0,m,nN,n1)

(1)a〃aa(a0,r,sR);(2)(3)

(a)arrsrsrrrs

(a0,r,sR);

(ab)aars

(a0,r,sR).

(二)指數(shù)函數(shù)及其性質

1、指數(shù)函數(shù)的概念:一般地,函數(shù)yax(a0,且a1)叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域為R.

注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.2、指數(shù)函數(shù)的圖象和性質a>10(2)若x0,則f(x)1;f(x)取遍所有正數(shù)當且僅當xR;(3)對于指數(shù)函數(shù)f(x)ax(a0且a1),總有f(1)a;二、對數(shù)函數(shù)(一)對數(shù)

1.對數(shù)的概念:一般地,如果axN(a0,a1),那么數(shù)x叫做以.a為底..N的對數(shù),記作:xlog數(shù),logxaN(a底數(shù),N真

aN對數(shù)式)

說明:○1注意底數(shù)的限制a0,且a1;2aNlogNx;○

3注意對數(shù)的書寫格式.○

alogaN兩個重要對數(shù):

1常用對數(shù):以10為底的對數(shù)lgN;○

2自然對數(shù):以無理數(shù)e2.71828為底的對數(shù)的對數(shù)lnN○

指數(shù)式與對數(shù)式的互化

冪值真數(shù)

a=NlogaN=bb.

底數(shù)指數(shù)對數(shù)(二)對數(shù)的運算性質

如果a0,且a1,M0,N0,那么:1loga(M〃N)logaM+logaN;○

2log○3log○

MaNMnlogaM-logaaN;

anlogM(nR).

注意:換底公式

logcblogab(a0,且a1;c0,且c1;b0).

logca利用換底公式推導下面的結論(1)logambnnmloga(2)logb;

ab1logba.

(二)對數(shù)函數(shù)

1、對數(shù)函數(shù)的概念:函數(shù)ylogax(a0,且a1)叫做對數(shù)函

數(shù),其中x是自變量,函數(shù)的定義域是(0,+∞).

注意:○1對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如:y2log2x,其為對數(shù)型函數(shù).

2對數(shù)函數(shù)對底數(shù)的限制:(a0,且a1).○

ylogx5都不是對數(shù)函數(shù),而只能稱

2、對數(shù)函數(shù)的性質:a>132.521.50

擴展閱讀:高一數(shù)學必修1各章知識點總結

金太陽新課標資源網(wǎng)wx.jtyjy.com

高一數(shù)學必修1各章知識點總結

第一章集合與函數(shù)概念

一、集合有關概念1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上最高的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合3.集合的表示:{}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,

北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}(2)集合的表示方法:列舉法與描述法。注意:常用數(shù)集及其記法:

非負整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

1)列舉法:{a,b,c}2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合

的方法。{xR|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合間的基本關系1.“包含”關系子集

注意:AB有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2.“相等”關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個集合是它本身的子集。AA

②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作ABA)

③如果AB,BC,那么AC④如果AB同時BA那么A=B

3.不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。有n個元素的集合,含有2n個子集,2n-1個真子集三、集合的運算運算交集并集補集類型定由所有屬于A且屬義于B的元素所組成的集合,叫做A,B的交集.記作AB(讀由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:ABB(或

設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)金太陽新課標資源網(wǎng)wx.jtyjy.com金太陽新課標資源網(wǎng)wx.jtyjy.com

作‘A交B’),即(讀作‘A并B’),記作CSA,即AB={x|xA,且即AB={x|xA,xB}.或xB}).CSA={x|xS,且xA}韋恩ABABS圖A示圖1圖2性AA=AAA=A(CuA)(CuB)AΦ=ΦAΦ=AAAA=Cu(AB=BB=BAB)ABAABA(CuA)(CuB)質ABBABB=Cu(AB)A(CuA)=UA(CuA)=Φ.

例題:

1.下列四組對象,能構成集合的是()

A某班所有高個子的學生B著名的藝術家C一切很大的書D倒數(shù)等于它自身的實數(shù)2.集合{a,b,c}的真子集共有個

3.若集合M={y|y=x2

-2x+1,xR},N={x|x≥0},則M與N的關系是.4.設集合A=x1x2,B=xxa,若

AB,則a的取值范圍是5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有人,化學實驗做得正確得有31人,

兩種實驗都做錯得有4人,則這兩種實驗都做對的有人。

6.用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M=.

7.已知集合A={x|x2+2x-8=0},B={x|x2

-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值

二、函數(shù)的有關概念

1.函數(shù)的概念:設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.注意:

1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。求函數(shù)的定義域時列不等式組的主要依據(jù)是:(1)分式的分母不等于零;

(2)偶次方根的被開方數(shù)不小于零;(3)對數(shù)式的真數(shù)必須大于零;

(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.

金太陽新課標資源網(wǎng)

wx.jtyjy.com

金太陽新課標資源網(wǎng)wx.jtyjy.com

(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零,

(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關);②定義域一致(兩點必須同時具備)(見課本21頁相關例2)2.值域:先考慮其定義域(1)觀察法(2)配方法(3)代換法

3.函數(shù)圖象知識歸納

(1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數(shù)對x、y為坐標的點(x,y),均在C上.(2)畫法A、描點法:B、圖象變換法

常用變換方法有三種1)平移變換2)伸縮變換3)對稱變換4.區(qū)間的概念

(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間(2)無窮區(qū)間

(3)區(qū)間的數(shù)軸表示.5.映射

一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:AB為從集合A到集合B的一個映射。記作“f(對應關系):A(原象)B(象)”

對于映射f:A→B來說,則應滿足:

(1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對應的象可以是同一個;(3)不要求集合B中的每一個元素在集合A中都有原象。6.分段函數(shù)

(1)在定義域的不同部分上有不同的解析表達式的函數(shù)。(2)各部分的自變量的取值情況.

(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.補充:復合函數(shù)

如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數(shù)。

二.函數(shù)的性質

1.函數(shù)的單調性(局部性質)(1)增函數(shù)

設函數(shù)y=f(x)的定義域為I,如果對于定義域I內的某個區(qū)間D內的任意兩個自變量x1,x2,當x1金太陽新課標資源網(wǎng)wx.jtyjy.com

>f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調

減區(qū)間.

注意:函數(shù)的單調性是函數(shù)的局部性質;(2)圖象的特點

如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調性,在單調區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.(3).函數(shù)單調區(qū)間與單調性的判定方法(A)定義法:

1任取x1,x2∈D,且x1金太陽新課標資源網(wǎng)wx.jtyjy.com

3利用函數(shù)單調性的判斷函數(shù)的最大(。┲担骸

如果函數(shù)y=f(x)在區(qū)間[a,b]上單調遞增,在區(qū)間[b,c]上單調遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

如果函數(shù)y=f(x)在區(qū)間[a,b]上單調遞減,在區(qū)間[b,c]上單調遞增則函數(shù)y=f(x)在x=b處有最小值f(b);例題:

1.求下列函數(shù)的定義域:⑴yx2x15x332⑵y1(x1x12)2.設函數(shù)f(x)的定義域為[0,1],則函數(shù)f(x2)的定義域為__

3.若函數(shù)f(x1)的定義域為[2,3],則函數(shù)f(2x1)的定義域是4.函數(shù)

x2(x1)2,若f(x)3,則xf(x)x(1x2)2x(x2)2=

5.求下列函數(shù)的值域:

⑴yx22x3(xR)⑵yx2x3x[1,2]

(3)yx12x(4)y6.已知函數(shù)

f(x1)x4x,求函數(shù)

2x4x52f(x),f(2x1)的解析式

7.已知函數(shù)f(x)滿足2f(x)f(x)3x4,則f(x)=。8.設f(x)是R上的奇函數(shù),且當x[0,)時,

f(x)x(13x),則當x(,0)時

f(x)=

f(x)在R上的解析式為9.求下列函數(shù)的單調區(qū)間:⑴yx22x3⑵y2x2x3⑶yx6x1

210.判斷函數(shù)yx31的單調性并證明你的結論.

211.設函數(shù)f(x)1x判斷它的奇偶性并且求證:f(1)f(x).

21xx

第二章基本初等函數(shù)

一、指數(shù)函數(shù)

(一)指數(shù)與指數(shù)冪的運算

n1.根式的概念:一般地,如果xa,那么x叫做a的n次方根,其中n>1,

*

且n∈N.

n負數(shù)沒有偶次方根;0的任何次方根都是0,記作00。

當n是奇數(shù)時,anna,當n是偶數(shù)時,ann(a0)a|a|

a(a0)2.分數(shù)指數(shù)冪

正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:

manna(a0,m,nN,n1)m*,

金太陽新課標資源網(wǎng)wx.jtyjy.com金太陽新課標資源網(wǎng)wx.jtyjy.com

amn1mn1na0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義3.實數(shù)指數(shù)冪的運算性質

am(a0,m,nN,n1)

*(1)aaa(a0,r,sR);(2)(a)a

rrsrsrsrrrs

(a0,r,sR);

(3)(ab)aa(a0,r,sR).(二)指數(shù)函數(shù)及其性質

1、指數(shù)函數(shù)的概念:一般地,函數(shù)yax(a0,且a1)叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域為R.

注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.2、指數(shù)函數(shù)的圖象和性質a>10金太陽新課標資源網(wǎng)wx.jtyjy.com

兩個重要對數(shù):

1常用對數(shù):以10為底的對數(shù)lgN;○

2自然對數(shù):以無理數(shù)e2.71828為底的對數(shù)的對數(shù)lnN.○

指數(shù)式與對數(shù)式的互化

冪值真數(shù)

ba=NlogaN=b

底數(shù)指數(shù)對數(shù)

(二)對數(shù)的運算性質

如果a0,且a1,M0,N0,那么:1loga(MN)logaM+logaN;○

2log○3log○

MaNMnlogaM-logaaN;

anlogM(nR).

注意:換底公式

logcblogab(a0,且a1;c0,且c1;b0).

logca利用換底公式推導下面的結論(1)logambnnmlogab;(2)logab1logba.

(二)對數(shù)函數(shù)

1、對數(shù)函數(shù)的概念:函數(shù)ylogax(a0,且a1)叫做對數(shù)函數(shù),其

中x是自變量,函數(shù)的定義域是(0,+∞).注意:○1對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如:

y2log2x,ylogx5都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).

52對數(shù)函數(shù)對底數(shù)的限制:(a0,且a1).○

2、對數(shù)函數(shù)的性質:a>10金太陽新課標資源網(wǎng)wx.jtyjy.com

1、冪函數(shù)定義:一般地,形如yx(aR)的函數(shù)稱為冪函數(shù),其中為常數(shù).

2、冪函數(shù)性質歸納.

(1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1);

0時,(2)冪函數(shù)的圖象通過原點,并且在區(qū)間[0,)上是增函數(shù).特別地,當1時,冪函數(shù)的圖象下凸;當01時,冪函數(shù)的圖象上凸;

(3)0時,冪函數(shù)的圖象在區(qū)間(0,)上是減函數(shù).在第一象限內,當x從右邊趨向原點時,圖象在y軸右方無限地逼近y軸正半軸,當x趨于時,圖象在x軸上方無限地逼近x軸正半軸.例題:1.已知a>0,a

0,函數(shù)y=ax與y=loga(-x)的圖象只能是()

2.計算:①

loglog26413

3;②2784log23=;25113log5272log52=;

27③0.064()[(2)]0343160.750.012=

3.函數(shù)y=log1(2x2-3x+1)的遞減區(qū)間為

24.若函數(shù)f(x)logax(0a1)在區(qū)間[a,2a]上的最大值是最小值的3倍,則a=5.已知f(x)log

第三章函數(shù)的應用

一、方程的根與函數(shù)的零點

1、函數(shù)零點的概念:對于函數(shù)yf(x)(xD),把使f(x)0成立的實數(shù)x叫做函數(shù)yf(x)(xD)的零點。

2、函數(shù)零點的意義:函數(shù)yf(x)的零點就是方程f(x)0實數(shù)根,亦即函數(shù)yf(x)的圖象與x軸交點的橫坐標。

即:方程f(x)0有實數(shù)根函數(shù)yf(x)的圖象與x軸有交點函數(shù)yf(x)有零點.

3、函數(shù)零點的求法:

1(代數(shù)法)求方程f(x)0的實數(shù)根;○

2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)yf(x)的○

圖象聯(lián)系起來,并利用函數(shù)的性質找出零點.

金太陽新課標資源網(wǎng)

1xa1x(a0且a1),(1)求f(x)的定義域(2)求使f(x)0的x的取值范圍

wx.jtyjy.com金太陽新課標資源網(wǎng)wx.jtyjy.com

4、二次函數(shù)的零點:

二次函數(shù)yax2bxc(a0).

(1)△>0,方程ax2bxc0有兩不等實根,二次函數(shù)的圖象與x軸有兩個交點,二次函數(shù)有兩個零點.(2)△=0,方程ax2bxc0有兩相等實根,二次函數(shù)的圖象與x軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

(3)△<0,方程ax2bxc0無實根,二次函數(shù)的圖象與x軸無交點,二次函數(shù)無零點.5.函數(shù)的模型

檢驗符合實際用函數(shù)模型解釋實際問題畫散點圖收集數(shù)據(jù)不符合實際選擇函數(shù)模型金太陽新課標資源網(wǎng)

求函數(shù)模型wx.jtyjy.com

友情提示:本文中關于《高一數(shù)學必修一第二章知識總結》給出的范例僅供您參考拓展思維使用,高一數(shù)學必修一第二章知識總結:該篇文章建議您自主創(chuàng)作。

來源:網(wǎng)絡整理 免責聲明:本文僅限學習分享,如產生版權問題,請聯(lián)系我們及時刪除。


高一數(shù)學必修一第二章知識總結》由互聯(lián)網(wǎng)用戶整理提供,轉載分享請保留原作者信息,謝謝!
鏈接地址:http://www.weilaioem.com/gongwen/441270.html