高中幾何證明定理
一.直線與平面平行的(判定)
1.判定定理.平面外一條直線如果平行于平面內(nèi)的一條直線,那么這條直線與這個平面平行.
2.應(yīng)用:反證法(證明直線不平行于平面)
二.平面與平面平行的(判定)
1.判定定理:一個平面上兩條相交直線都平行于另一個平面,那么這兩個平面平行
2.關(guān)鍵:判定兩個平面是否有公共點(diǎn)
三.直線與平面平行的(性質(zhì))
1.性質(zhì):一條直線與一個平面平行,則過該直線的任一與此平面的交線與該直線平行2.應(yīng)用:過這條直線做一個平面與已知平面相交,那么交線平行于這條直線
四.平面與平面平行的(性質(zhì))
1.性質(zhì):如果兩個平行平面同時和第三個平面相交,那么他們的交線平行
2.應(yīng)用:通過做與兩個平行平面都相交的平面得到交線,實(shí)現(xiàn)線線平行
五:直線與平面垂直的(定理)
1.判定定理:一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直
2.應(yīng)用:如果一條直線與一個平面垂直,那么這條直線垂直于這個平面內(nèi)所有的直線(線面垂直→線線垂直)
六.平面與平面的垂直(定理)
1.一個平面過另一個平面的垂線,則這兩個平面垂直
(或者做二面角判定)
2.應(yīng)用:在其中一個平面內(nèi)找到或做出另一個平面的垂線,即實(shí)現(xiàn)線面垂直證面面垂直的轉(zhuǎn)換
七.平面與平面垂直的(性質(zhì))
1.性質(zhì)一:垂直于同一個平面的兩條垂線平行
2.性質(zhì)二:如果兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直
3.性質(zhì)三:如果兩個平面互相垂直,那么經(jīng)過第一個平面內(nèi)的一點(diǎn)垂直于第二個平面內(nèi)的直線,在第一個平面內(nèi)(性質(zhì)三沒什么用,可以不用記)
以上,是立體幾何的定理和性質(zhì)整理.是一定要記住的基本!。
想要變-態(tài)的這里多的是--
歐拉定理&歐拉線&歐拉公式(不一樣)
九點(diǎn)圓定理
葛爾剛點(diǎn)
費(fèi)馬定理(費(fèi)馬點(diǎn)(也叫做費(fèi)爾馬點(diǎn)))
海倫-公式
共角比例定理
張角定理
帕斯卡定理
曼海姆定理
卡諾定理
芬斯勒-哈德維格不等式(幾何的)
外森匹克不等式(同上)
琴生不等式(同上)
塞瓦定理
梅涅勞斯定理
斯坦納定理
托勒密定理
分角線定理(與角分線定理不同)
斯特瓦爾特定理
切點(diǎn)弦定理
西姆松定理。
第二篇:幾何證明定理幾何證明定理
一.直線與平面平行的(判定)
1.判定定理.平面外一條直線如果平行于平面內(nèi)的一條直線,那么這條直線與這個平面平行.
2.應(yīng)用:反證法(證明直線不平行于平面)
二.平面與平面平行的(判定)
1.判定定理:一個平面上兩條相交直線都平行于另一個平面,那么這兩個平面平行
2.關(guān)鍵:判定兩個平面是否有公共點(diǎn)
三.直線與平面平行的(性質(zhì))
1.性質(zhì):一條直線與一個平面平行,則過該直線的任一與此平面的交線與該直線平行2.應(yīng)用:過這條直線做一個平面與已知平面相交,那么交線平行于這條直線
四.平面與平面平行的(性質(zhì))
1.性質(zhì):如果兩個平行平面同時和第三個平面相交,那么他們的交線平行
2.應(yīng)用:通過做與兩個平行平面都相交的平面得到交線,實(shí)現(xiàn)線線平行
五:直線與平面垂直的(定理)
1.判定定理:一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直
2.應(yīng)用:如果一條直線與一個平面垂直,那么這條直線垂直于這個平面內(nèi)所有的直線(線面垂直→線線垂直)
六.平面與平面的垂直(定理)
1.一個平面過另一個平面的垂線,則這兩個平面垂直
(或者做二面角判定)
2.應(yīng)用:在其中一個平面內(nèi)找到或做出另一個平面的垂線,即實(shí)現(xiàn)線面垂直證面面垂直的轉(zhuǎn)換
七.平面與平面垂直的(性質(zhì))
1.性質(zhì)一:垂直于同一個平面的兩條垂線平行
2.性質(zhì)二:如果兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直
3.性質(zhì)三:如果兩個平面互相垂直,那么經(jīng)過第一個平面內(nèi)的一點(diǎn)垂直于第二個平面內(nèi)的直線,在第一個平面內(nèi)(性質(zhì)三沒什么用,可以不用記)
以上,是立體幾何的定理和性質(zhì)整理.是一定要記住的基本!!
31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32等腰三角形的頂角平分線、底邊上的中線和高互相重合
33推論3等邊三角形的各角都相等,并且每一個角都等于60°34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35推論1三個角都相等的三角形是等邊三角形
36推論2有一個角等于60°的等腰三角形是等邊三角形
37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點(diǎn)和這條線段兩個端點(diǎn)的距離相等
40逆定理和一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42定理1關(guān)于某條直線對稱的兩個圖形是全等形
43定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線
44定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上
45逆定理如果兩個圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a+b=c
47勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a+b=c,那么這個三角形是直角三角形
48定理四邊形的內(nèi)角和等于360°
49四邊形的外角和等于360°
50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
51推論任意多邊的外角和等于360°
52平行四邊形性質(zhì)定理1平行四邊形的對角相等
53平行四邊形性質(zhì)定理2平行四邊形的對邊相等
54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60矩形性質(zhì)定理1(更多請關(guān)注www.weilaioem.com)矩形的四個角都是直角
61矩形性質(zhì)定理2矩形的對角線相等
62矩形判定定理1有三個角是直角的四邊形是矩形。
第三篇:初一常用幾何證明的定理初一常用幾何證明的定理總結(jié)
平面直角坐標(biāo)系各個象限內(nèi)和坐標(biāo)軸的點(diǎn)的坐標(biāo)的符號規(guī)律:
(1)x軸將坐標(biāo)平面分為兩部分,x軸上方的縱坐標(biāo)為正數(shù);x軸下方的點(diǎn)縱坐標(biāo)為負(fù)數(shù)。即第一、二象限及y軸正方向(也稱y軸正半軸)上的點(diǎn)的縱坐標(biāo)為正數(shù);第三、四象限及y軸負(fù)方向(也稱y軸負(fù)半軸)上的點(diǎn)的縱坐標(biāo)為負(fù)數(shù)。
反之,如果點(diǎn)p(a ,b)在x軸上方,則b>0;如果p(a ,b)在x軸下方,則b<0。
(2)y軸將坐標(biāo)平面分成兩部分,y軸左側(cè)的點(diǎn)的橫坐標(biāo)為負(fù)數(shù);y軸右側(cè)的點(diǎn)的橫坐標(biāo)為正數(shù)。即第
二、三象限和x軸的負(fù)半軸上的點(diǎn)的橫坐標(biāo)為負(fù)數(shù);第一、四象限和x軸正半軸上的點(diǎn)的橫坐標(biāo)為正數(shù)。
(3)規(guī)定坐標(biāo)原點(diǎn)的坐標(biāo)為(0 ,0)
(4
(5)
第四篇:初一常用幾何證明的定理總結(jié)初一常用幾何證明的定理總結(jié)
平面直角坐標(biāo)系各個象限內(nèi)和坐標(biāo)軸的點(diǎn)的坐標(biāo)的符號規(guī)律:
(1)x軸將坐標(biāo)平面分為兩部分,x軸上方的縱坐標(biāo)為正數(shù);x軸下方的點(diǎn)縱坐標(biāo)為負(fù)數(shù)。即第一、二象限及y軸正方向(也稱y軸正半軸)上的點(diǎn)的縱坐標(biāo)為正數(shù);第三、四象限及y軸負(fù)方向(也稱y軸負(fù)半軸)上的點(diǎn)的縱坐標(biāo)為負(fù)數(shù)。
反之,如果點(diǎn)p(a ,b)在x軸上方,則b>0;如果p(a ,b)在x軸下方,則b<0。 (2)y軸將坐標(biāo)平面分成兩部分,y軸左側(cè)的點(diǎn)的橫坐標(biāo)為負(fù)數(shù);y軸右側(cè)的點(diǎn)的橫坐標(biāo)為正數(shù)。即第二、三象限和x軸的負(fù)半軸上的點(diǎn)的橫坐標(biāo)為負(fù)數(shù);第一、四象限和x軸正半軸上的點(diǎn)的橫坐標(biāo)為正數(shù)。
(3)規(guī)定坐標(biāo)原點(diǎn)的坐標(biāo)為(0 ,0) (4
(5)
對稱點(diǎn)的坐標(biāo)特征:
(1)關(guān)于x軸對稱的兩點(diǎn):橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù)。如點(diǎn)p(x 1 ,y 1)與q(x 2 ,y 2)?x1=x2
關(guān)于x軸對稱,則?反之也成立。如p(2 ,-3)與q(2 ,3)關(guān)于x軸對稱。
y?y?0?12
(2)關(guān)于y軸對稱的兩點(diǎn):縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)。如點(diǎn)p(x 1 ,y 1)與q(x 2 ,y 2)?y1=y(tǒng)2
關(guān)于y軸對稱,則?反之也成立。如p(2 ,-3)與q(-2 ,-3)關(guān)于y軸對稱。
?x1?x2?0
(3)關(guān)于原點(diǎn)對稱的兩點(diǎn):縱坐標(biāo)、橫坐標(biāo)都互為相反數(shù)。如點(diǎn)p(x 1 ,y 1)與q(x 2 ,y 2)關(guān)?x1+x2?0
于原點(diǎn)對稱,則?反之也成立。如p(2 ,-3)與q(-2 ,3)關(guān)于原點(diǎn)對稱。
y?y?0?12
第五篇:立體幾何證明的向量公式和定理證明高考數(shù)學(xué)專題——立體幾何
遵循先證明后計(jì)算的原則,即融推理于計(jì)算之中,突出模型法,平移法等數(shù)學(xué)方法。注重考查轉(zhuǎn)化與化歸的思想。
立體幾何證明的向量公式和定理證明
附表2
頻道推薦相關(guān)范文:
201*.3.29幾何證明---基本公里定理本身的證明
立體幾何證明題公理定理集錦
李明波四點(diǎn)定理的平面幾何證明
淺談用向量法證明立體幾何中的幾個定理
選修4-1 幾何證明選講第2講 圓周角定理與圓的切線
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。