配方法解一元二次方程的教案
教學內(nèi)容:本節(jié)內(nèi)容是:人教版義務(wù)教育課程標準實驗教科書數(shù)學九年級上冊
第22章第2節(jié)第1課時。
一、教學目標
(一)知識目標
1、理解求解一元二次方程的實質(zhì)。
2、掌握解一元二次方程的配方法。
(二)能力目標
1、體會數(shù)學的轉(zhuǎn)化思想。
2、能根據(jù)配方法解一元二次方程的一般步驟解一元二次方程。
(三)情感態(tài)度及價值觀
通過用配方法將一元二次方程變形的過程,讓學生進一步體會轉(zhuǎn)化的思想方法,并增強他們學習數(shù)學的興趣。
二、教學重點
配方法解一元二次方程的一般步驟
三、教學難點
具體用配方法的一般步驟解一元二次方程。
四、知識考點
運用配方法解一元二次方程。
五、教學過程
(一)復習引入
1、復習:
解一元一次方程的一般步驟:(1)去分母;(2)去括號;(3)移項;(4)合并同類項;(5)系數(shù)化為1。
2、引入:
二次根式的意義:若x2=a (a為非負數(shù)),則x叫做a的平方根,即x=±√a 。實際上,x2 =a(a為非負數(shù))就是關(guān)于x的一元二次方程,求x的平方根就是解一元二次方程。
(二)新課探究
通過實際問題的解答,引出我們所要學習的知識點。通過問題吸引學生的注
意力,引發(fā)學生思考。
問題1:
一桶某種油漆可刷的面積為1500dm2李林用這桶油漆剛好刷完10個同樣的正方體形狀的盒子的全部外表面,你能算出盒子的棱長嗎?
問題1重在引出用直接開平方法解一元二次方程。這一問題學生可通過“平方根的意義”的講解過程具體的解答出來,
具體解題步驟:2解:設(shè)正方體的棱長為x dm,則一個正方體的表面積為6xdm2
列出方程:60x2=1500
x2=25
x=±5
因為x為棱長不能為負值,所以x=5
即:正方體的棱長為5dm。
1、用直接開平方法解一元二次方程
(1)定義:運用平方根的定義直接開方求出一元二次方程解。
(2)備注:用直接開平方法解一元二次方程,實質(zhì)是把一個一元二次方程“降次”,轉(zhuǎn)化為兩個一元二次方程來求方程的根。
問題2:
要使一塊矩形場地的長比寬多6cm,并且面積為16㎡,場地的長和寬應(yīng)各為多少?
問題2重在引出用配方法解一元二次方程。而問題2應(yīng)該大部分同學都不會,所以由我來具體的講解。主要通過與完全平方式對比逐步解這個方程。再由這個方程的求解過程師生共同總結(jié)出配方法解一元二次方程的一般步驟。讓學生加深映像。
具體解題步驟:
解:設(shè)場地寬x m,長(x +6)m。
列方程: x(x +6)=16
即: x2+6x-16=0
x2+6x=16
x2+6x+9=16+9
(更多請搜索:www.weilaioem.com為何實數(shù)值時,關(guān)于x的方程x2?mx?(3?m)?0(1)有實根(2)有兩正根(3)一正一負
變式題:m為何實數(shù)值時,關(guān)于x的方程x2?mx?(3?m)?0有兩個大于1的根.
例2. 若8x4+8(a-2)x2-a+5>0對于任意實數(shù)x均成立,求實數(shù)a的取值范圍.
例3.關(guān)于x的方程ax?2x?1?0至少有一個負根,求實數(shù)m的取值范圍。
課堂小練習:
【布置作業(yè)】
以下更多相關(guān)范文也很不錯:人教版數(shù)學九年級上冊22.3《實際問題與一元二次方程》精選教案
一元二次方程專題訓練一
一元二次方程實際問題
實際問題一元二次方程(2)
一元二次方程專題練習
來源:網(wǎng)絡(luò)整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。